EJ Technologies

The definitive guide to perfino

All you need to know as a performance professional

© 2021 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
ATCIITECEUIE ettt b bbbt bt et e b et et et e st e a e st e bt e bt e bt e bt e b e sbesbesbesbesbesbenbeneen 5
INISEAIIINE 1evveiteieietetee ettt ettt ettt e e e e s e e s e e be s s e sb e st e sbesb e st et e e b et et et e s sentenneneeraeneeneeraereerens 6
MONIEOFINE JVMS ettt sttt ettt st ettt s e s bt st e s b e satesbesasesbeeatebesasesbeensessesnsensens 12
BASIC CONCEPLS ittt st b e st b e st s bt e e s b e e b e s bt et e sbe e e e sreenbesreennes 17
UL ettt ettt bbbt h b bt h st b s h et bt bRt b e R bt bt b e b e st e b et b e st e bt b e bt be e benes 21
TFANSACTIONS ..eiiieieteeiesteete sttt st et st e e st e st s bt et e s bt e b e s st e besae e besate b e sueebesssesbeensessesnsessesnsessesnsens 28
POLICIES ettt ettt ettt et h e bbbt e b e s bt e b e s b e st e s b et et e b e b et e b et et et et eneeaeeaeene 35
CroSS-VIM MONITOTING ..eictiiriiiiieeiienie et ste st et e ste st e sseeste e bt e satesteesbeesatesbeesseesaseesseesasesnseesseessennne 39
PIODES ettt ettt ettt et e b e bbb bbbt et et et et et et e a e aeereebesaeeee 43
MELNOA SAMPIING .ttt sttt ettt ettt et s sbesbe b e 47
TEIEMIBLIIES ..ottt b bbbt et b et e b bbb e st st e st b et e b et e b e st ene st e st be e ebensenes 53
TREESNOIAS <.ttt sttt s b e s bbb bt e b e b et et et et et et e st e besaeeaesbesbeae 60
L= (] £SO ST PP PO PR PP PR 63
ALBIES ettt ettt ettt st b et b e a bbbt b e Eea e b e bbb bbb et b et e bt e bt be st e benteben 68
End user eXperience MONITOINEoceceirerieriinenere sttt sttt sttt et et et et et et sbesbesbesbesbesaes 71
IMEBIMIOIY ittt et st b e b e s b e bt e s bb e st e bt e saa s e b e e baesabeebaesane s 74
HiStOriCal COMPATISONS ..viieieieiiieieire sttt sttt ae s e e e e sseesesbessessesbasbesbestessesbessassensans 81
IMBEAN DIOWSEL ..ottt ettt ettt t bbbttt ettt e et e e et et et e bt s st eaeebesbesbesbesbesbeee 85
REST @XPOIT AP .ottt st sb e st sb s b e s e s bt esbe e e e sbeennesreennes 89
CroSS-0VEr t0 PrOFIlINEG .ecveiieiiiirinisire ettt sttt s b bbbt e s et et enaeseennesessnssenns 94
A CONTIGUIATION ettt ettt ettt sttt st sb e st sb e s bbb e st et et et et e b et et eneeneeaeens 103

AT Server CONFIZUIATION ..ottt ettt ettt sb e s bbbt b e ean 103

A2 Server admMINISTratiON ...ccco ettt ettt 105

A3 TMPOIT/EXPOIT ittt ettt ettt et s b e bt e st e st e e sbeesabe s beesabesabeesseesasasnsaesasesnses 110

A4 Unattended iNStallationscocceeerirerieinieieeeeee ettt 112

A5 AULOMALIC AZENT UPAALE .vivviviiiiiirieierietetereeet ettt ettt st s bbb st bbb e b besensens 114

A6 OVEr|0ad ProtECLION ...viiiiiieieietetetet ettt ettt ettt ettt et besbe b e 115
B AGVANCEA TOPICS wiivviriieiiiieiiiieenieseeste sttt st este s e este st e besbeestesbeesbesraessesseessesssessesssensesssensesssessessaens 116

B.T ANNOLAtioN tranNSACIONS ...uuvveiiiiiiiiieiic et e e e e e e s s eeaabbbaeereeeeeeesseessnnnes 116

B.2 POJO transactions

B.3 DEVOPS traNSACHIONS .e.vivviriiriieieniisienieetesieste st etesteetestesssesieessessasnsesseessessesnsessasssessesssessanns

B.4 Customizing Net 1/0 MEthOASoouiiiiiieieieieeerrerere et

Introduction To Perfino

What is perfino?

perfino is a monitoring tool for the JVM. It is intended for in-production use and adds
extremely low overhead to monitored applications. Its mode of operation is characterized as

APM ", short for "application performance management". Rather than collecting performance
data at a low level and with a broad scope, perfino presents selected operations at a high semantic
level, called "business transactions". In addition, scalar data is monitored from a variety of sources.
Based on that data, threshold violations can result in alerts that help you safeguard the quality
of service of your applications.

perfino is intended to run with your application at all times. This enables it to focus on historic
data, showing you how performance characteristics evolve over long periods of time. Data is
automatically made less granular as time goes by, so you can look back years into the past with
only a slow rate of storage space consumption.

perfino is designed to monitor multiple VMs and trace the interactions between them. Whether
you have a number of fixed VM installations or a cloud deployment with hundreds of VMs, perfino
can monitor and organize them at the same time.

The perfino Ul is a web interface that can be used by multiple users to analyze the collected
data at the same time. A system of access levels allows you to partition a single server for multiple
groups.

How do | continue?

This documentation is intended to be read in sequence, with later help topics building on the
content of previous ones.

First, a broad overview over the architecture [p. 5] will help you to understand the components
of perfino.

The help topics on installing perfino [p. 6] and monitoring your VMs [p. 12] will get you up and
running.

Following that, the discussion of basic concepts [p. 17] and the overview of the Ul [p. 21] take
you to a level of understanding where you can explore perfino on your own.

Subsequent chapters build your expertise with respect to different functionality in perfino. The
"Configuration" and "Advanced topics" sections are optional readings that should be consulted
if you need certain features.

M https://en.wikipedia.org/wiki/Application_Performance_Management

4

https://en.wikipedia.org/wiki/Application_Performance_Management

Perfino Architecture

optionally external optionally external
r A N\ r A N\
(: H)\
perfino server
5 Users
3
Database [«=— Collector Ul server
perfino perfino perfino
agent agent agent
Monitored Monitored Monitored
JVM JVM JVM
(& J (& J (& J

perfino consists of two main parts: the server and the agent. The agent is loaded in the monitored
VM and records data. The agent connects to a perfino server. The server periodically queries all
connected agents and processes their data. Historical information is written to a database. Users
log in with their web browser to the perfino server to analyze the recorded data.

Internally, the perfino server consists of three components:

The collector accepts TCP connections from perfino agents in monitored VMs. These
connections can be encrypted and authenticated, so they are viable for wide area networks.
The collector also consolidates data in the database, fires triggers and generates alerts.

The embedded H2 database stores all persistent data. There are two separate databases in
that directory, one called "perfino" that contains recorded data and one called "config" that
only contains configuration data. If you delete the "perfino" database while the perfino server
is shut down, all configuration options are preserved.

The Ul server accepts HTTPS connections where users can log in, view and analyze the collected
data and configure the server. Optionally, the Ul server can be deployed as a WAR file into a
separate JEE container like Apache Tomcat. It then uses RMI to talk to the collector. This is
useful if the collector is located in an internal network and the perfino Ul in a DMZ.

By default, the perfino server is the only process you need to run. In particular, you don't have
to worry about installing and configuring an external database.

Installing Perfino

Installing perfino is done in two steps. First you run the installer. After perfino is running, you
complete the post-installation setup in the browser.

Installer

Installers are available for all major platforms. By default, the installer shows a GUI, but if you
start the installer with the argument - c, it shows a console interface. This is required if you
install perfino on a remote server with ssh.

For cloud-based deployments you may want to install and configure the perfino server without
any user interaction. See the help topic on unattended installations [p. 112] for how to do that.

The installer asks you about all configuration options that are not configurable through the
browser in the perfino Ul. The most common setting that has to be adjusted is the the HTTPS/HTTP
port for the web server.

] Setup - m} X

Web Server Configuration

Fleaze configure the bundled web server for the user interface,
"

perfino collects and consclidates monitoring and profiing datz from JvMs and presents them in a

web interface, By default, the web interface is run in the same process as the data collection

SErver,

Please configure the web server properties below:

Web server port: 8020 9
[Use HTTPS 7]
[Reverse proxy 7]

install4j
< Back Next = Cancel

Beside the installation directory, a perfino installation needs a data directory where all variable
data is stored. This includes the database, log files and security certificates. By default, this
directory is set to the program data directory on Windows (typically C:\ Pr ogr anDat a) and
/var/ opt/ perfino on Unix and Mac OS X. In a scenario where you install multiple instances
of perfino on the same machine, each perfino installation has to have its own data directory.

&1 Setup -

O >
Data Directory
Where should perfino store its data?
—

perfino needs a directory to store its database and log files.

If you install multiple perfino servers on the same computer, each installation has to have its own
data directory.

Data directory: |C:\ProgramData'perfino Browse ...

install4j

< Back Next > Cancel

For evaluation purposes, this is all the installer needs to know. If you are deploying to a production
environment, you might want to adjust other options, such as an external database.

] Setup -

m} X
Advanced Options
Do you want to configure advanced options?
—

All essential configuration steps have been completed.

There are some advanced configuration options that can now be adjusted. The advanced
configuration is contained in the file perfinc . properties and can be visually edited with the
configure executable at any time,

® ¥

() Show advanced configuration now

install4j
< Back Next > Cancel

Changing the initial configuration later on

The installer saves the configuration to the file per f i no. pr operti es intheinstallation directory.
To change the configuration at a later time, you can edit that file or run the conf i gur e[. exe]
tool in the installation directory. The configure tool requests elevated privileges on Windows and
Mac OS X, so that it can overwrite the configuration file and restart the server.

&1 Setup - m} X
REST APT Port
Please indicate if a REST API service should be created
—_—
To expose the perfino REST APL, enter a port value greater than zero in the text field below,
The REST API service uses the protocol (HTTP or HTTPS) that is configured for the web server,
[C]REST APLport |0 7]

install4j

< Back Next > Cancel

The GUI of the configure tool presents the configuration options in the same way as the installer
if you choose to configure advanced settings. Just like the installer, you can run the configure
tool in console mode by calling it with the - ¢ argument:

configure -c

The various options are briefly documented in perfino.properties with the same explanations
shown in the GUI when you hover the mouse over the question mark icons. For more information,
see the help on server configuration [p. 103].

Post-installation setup

After the installer has finished, the perfino server is running and you can open your browser at
http[s]://local host:[port] to connect to the perfino Ul. Note that if you have selected
HTTPS for the web server, there is no port that serves HTTP requests.

Before you can use perfino, you have to complete the installation wizard in the perfino Ul. The
first step of the wizard asks you about the license key.

In the free development mode, you can monitor one VM without time restrictions. Historical
data is only shown for the last 24 hours. This mode is intended for testing the perfino API during
development.

With an evaluation license, an unlimited number of VMs can be monitored for a limited period
of time. If you need more time to evaluate, contact sales@ej-technologies.com in order to get a
new evaluation key. After the expiration of the evaluation key, the perfino server will continue
to run, but JVM monitoring is suspended.

After purchasing a permanent license, you can monitor an unlimited number of VMs with no
time restrictions. You can enter the permanent license key directly in the installer. After the
installation, you can add a permanent license key on the "License Keys" tab of the "General
settings".

mailto:sales@ej-technologies.com

Please complete the configuration of perfino.
’ I After the initial setup, this configuration is available in the "General Settings”.
=

1. License

® Evaluzte
Menitor &n unlimited number of VMs for 30 days. After that, the free development license is activated.

Free development license
Monitor 1 VM without time limit. Historical data is shown for the last 24 hours.

_ Enter license keys
To enter license keys that you have received by email, choose this option. No internet connectien is required.

You can add or remove license keys later on.

The second important step is the next one where you configure the initial admin user. You can
configure other admin and non-admin users later on. The full name is displayed in the Ul and
the email can be entered so that an administrator can more easily identify or contact users.

[®] 8 <rotogzecim> « f Bosovws - J O

perfino - Setup
Please complete the configuration of perfino.
’ I After the initial setup, this configuration is available in the "General Settings”.
=

1. License 2. User Account

A user account with all privileges must be configured for working with perfino.

Password *

Confirm Password *

Full Name

Email

You can configure restricted users later on,

Back Next

In the "Recording Options" step you already get a chance to configure VM groups. However, it
is not necessary to do so at this point.

The server can only send emails if it has a valid SMTP server configuration, so in the next step
it asks you to provide this information. If you do not intend to send emails, you can skip this
step.

When you complete the wizard, the server is fully initialized and the installation wizard cannot
be shown again. However, all settings in the installation wizard can also be adjusted in the perfino
Ul. You are now presented with the empty dashboard and can continue to set up monitored
JVMs as explained in the next chapter.

10

(o]2 [rnJo o

(D Dashboard VMs =& Call Graph |ay VM Data Views *, Inbox

Period: \Last hour ~ | Time line: |AII transactions v | VM group: |All VMs | Alert count: 0 [show all alerts]
1 1
E o
& T
£ 0.3 3
1310 13:20 13:30 13:40 13:50 14:00
[configure]
Transaction Mame Average Time - Count Total Time
M Mormal Slow I Very slow
M Error Il Overdue Mo data
[configure] [configure]
Telemetry Name Value Problem Count -
Connected VMs .08
cPU - 0
0
Used Heap . 0% No problems detected
) . 0
Average Transaction Duration [E—
0
|DBC Average Statement Execution Time . Qo

11

Monitoring JVMs

After perfino is installed, the agent can be added to JVMs on the local machine and on remote
machines.

Basic mechanism

The perfino agent is a Java agent. It is loaded into a VM by specifying the -j avagent VM
parameter. Java agents are able to instrument classes as they are loaded and to retransform
classes that have already been loaded.

To prepare a VM for monitoring, you need the perfino agent files and you have to know the
actual VM parameter that needs to be inserted into the start script of your application server or
your application. In a production deployment, the monitored VMs will usually be running on
different machines. You do not have to install perfino on those machines, you just download the
agent files from the perfino Ul. Also, you will get instructions on how to construct the correct
-j avaagent VM parameter.

To get started, click on the "Add VMs" button in the header.

perfino server and monitored VM running on the local machine

If the perfino Ul server is running locally, the perfino agent is already available in the perfino
installation directory and you can easily monitor a locally running VM. This is a likely scenario if
you are evaluating perfino. In that case, you will be asked whether the VM is running on the local
machine or on a remote machine.

Local Or Remote

@ Is the VM that should be monitored located on a remote machine or on this machine?

" This Machine | | Remote Machine | | Cancel |

The "Add VMs" dialog displays the complete - j avaagent VM parameter for the simplest case
without any further configuration. It is suitable for monitoring a single VM.

12

How to add locally running VMs to perfino
Monitoring a VM is easy. Just add a VM parameter to your start script.
=l

Add the VM parameter
"—javaagent:C:\Users\ingo\projects\perfino\distiagent\perfino.jar"

to the Java invocation in your start script.

Enhancement: To give the VM a proper name and a group, append
=name=[a2 name for the VM],group=[an cpticnal group neme for the VM]

o the above VM parameter

Advanced: If you have a pool of equivalent VMs, such as in a cloud environment, append
=pool=[a name for the VM pool]

o the above VM parameter instead of using the "name” and "group” parameters. You can build a hierarchy with group and
pool names like this: 1evell/level2/level3.

Further instructions regarding group and pool names are explained below.

perfino server and monitored VM running on the different machines

In the general case, where the perfino server and the monitored VMs are running on different
machines, you can download the agent files from the dialog:

Add VMs To perfino x
How to add more VMs to perfino
Monitoring a VM is easy. Just add a VM parameter to your start script. The necessary agent files can be

downloaded below

Step 1: Download the agent | as a.tar.gz archive v

Step 2: Copy the agent to the machine where the ¥M is running

The location of the file perfino.jar is referenced in the next step.

Step 3: Add the VM parameter

—javaagent: [path to perfino.ja

or name of perfino server], name=

[2 name for the WM],group=[an
to the Java invocation in your start script.
Advanced: If you have a pool of equivalent VMs, such as in a cloud environment, append

(pool=[a name for the VM pool]

to the above VM parameter instead of using the "name” and "group” parameters. You can build a hierarchy with
group and pool names like this: levell/level2/level3.

perfino has an integration with JProfiler [p. 94] that allows you to perform full sampling of a
monitored VM and open the resulting snapshots in JProfiler. The libraries that implement full
sampling are native libraries, and are included in the archive.

Depending on the selected option, a .zip or a .tar.gz file will be saved after clicking the Download
button. Extract that archive anywhere on the computer where the monitored VM is running. In

13

the top-level directory of that archive there is a file named per fi no. j ar, whose path will be
referenced in the - j avaagent VM parameter.

The VM parameter is not specified completely in the "Add VMs" dialog, since it depends on where
you extract the archive and the name or IP address of the perfino server:

-javaagent:[path to perfino.jar]=server=[|IP or host nane]

Without the server option, the agent will assume that the perfino server is running on localhost.

Naming VMs
If you monitor multiple VMs, you have to give them names in order to be able to identify them
in the perfino Ul. To assign a VM name, pass the nane optionto the - j avaagent VM parameter:

-javaagent:[path to perfino.jar]=server=[|P/ host], name=[VM nane]

Each name can only be used by one VM at the same time. A second VM that requests to be
monitored with the same name will be rejected by the perfino server. If you have a pool of VMs
that cannot be assigned with unique names, see the section on VM pools below.

Monitored VM

/ name "web"

.
L
.
.
.

perfino Server

rej T .
S8ty o, Monitored VM
name "web"

In addition to the VM name, you can group VMs into a hierarchy. By default, a VM is inserted into
the top-level group. To assign it to another group, set the gr oup option in the VM parameter:

-javaagent:[path to perfino.jar]=server=[|P/ host], nane=[VM nane], gr oup=[gr oup nane]

In the group name, separate hierarchy levels with forward slashes, as in Web/ Wor ker s/ Gen3.
A complete - j avaagent parameter looks like this:

-j avaagent:/ opt/ perfino/ perfino.jar=server=192. 198. 0. 33, nane=web, gr oup=Web/ Wr ker s/ Gen3

VM names must be unique within the same group.

VM pools

Sometimes it is not possible to configure VMs with unique names, for example in a cloud
environment where instances are provisioned dynamically. In that case, you can assign the
VM to a VM pool:

14

-j avaagent:/opt/perfino/perfino.jar=server=192. 198. 0. 33, pool =Web/ Wr ker s

Like the gr oup option, the pool option takes a hierarchical name with forward slashes as the
hierarchy separator. If pool is specified, you cannot specify nane or gr oup and vice versa.

In a pool, a monitored VM is given a name with a unique identifier. When the VM detaches, this
identifier will never be used again. Unlike for named VMs, the history of a single VM is limited to
the connection time of that VM, so there is no associated long term history. However, you can
follow the history of the entire pool to analyze trends and make historical comparisons.

Monitored VM
pool "web"

perfino Server

Monitored VM
pool "web"

Server port

By default, a perfino server listens for VM connections on port 8847. This is the port that needs
to be opened in firewalls to allow monitored VMs to reach the perfino server.

A perfino server may be configured to use a different port by adjusting the "vmPort"
property [p. 103]in per fi no. properti es.Thisis necessary if the portis already in use or if you
install multiple instances of perfino on the same machine.

To tell the agent about such a non-default port, you have to add the por t optiontothe-j avagent
VM parameter. For example:

-javaagent : / opt/ perfino/ perfino.jar=server=192. 198. 0. 33, port =8912, nane=t est

Logging

The perfino agent logs errors to the directory $HOME . perfino/log on Linux/Unix or
98JSERPROFI LE% . perfi no\ |l og on Windows. Log files are created on demand, if nothing is
logged, no file is created. The name of the log file is <VM nane>. | og where <VM name> is the
value of the nane or the pool parameter.

To log to a different file, you can add the | ogFi | e=<path to log file> option to the
-javagent VM parameter. To disable logging altogether, the option | ogEnabl ed=f al se can
be appended.

Encryption and authentication

Mutual authentication and encryption are enabled by the agent keystore file agent . ks in the
same directory as the perfino. j ar file. The agent keystore is generated by the server and is
located in the ssl directory below the perfino data directory.

15

When the "vmUseSs|" property in per fi no. properti es is settotrue, the agent keystore file
is automatically added to the agent files that you download from the perfino Ul. In that case,
encryption and authentication work out of the box.

If you switch encryption and authentication on or off after you have set up your monitored VMs,
you have to make the following changes manually:

+ Switching encryption on

Locate [perfino data directory]/ssl/agent. ks and copy it to the agent installations
on all machines where VMs are monitored. The keystore file has to be copied to the same
directory as the file per f i no. j ar. If the correct agent keystore is not present, the server will
refuse the connection from the agent.

+ Switching encryption off

Delete the file agent . ks nextto the file per fi no. j ar inthe agentinstallations on all machines
where VMs are monitored. If that file is present and the server does not use encryption, the
agent will refuse to connect to it.

If you would like to keep the agent keystore file in a different path, add the keyst or e option to
the - j avagent VM parameter. For example:

-javaagent : /opt/ perfino/ perfino.jar=server=192. 198. 0. 33, keyst or e=/ sec/ agent . ks, nane=t est

16

Basic Concepts

perfino collects data of two fundamentally different types: transactions and telemetries. Policies
and thresholds are used to detect anomalous conditions while triggers take action if something
is out of order.

Transactions

In perfino, you analyze your business processes with transactions [p. 28]. At a technical level, a
transaction is simply a method invocation. To measure a transaction, perfino records its timing
and constructs a transaction name that describes the business process.

The transaction naming has a significant impact on what you will see in the perfino Ul.

+ It enables you to understand what triggered the transaction.

+ It groups all business processes with the same transaction name and so determines the
granularity that is used to measure business processes.

+ It can serve as a basis to filter out unwanted operations.

perfino cannot know what your business processes are, so configuring transactions is an important
part in setting up an application for monitoring. Some frameworks are high-level by nature and
so perfino can offer them as transaction types that can be configured with a minimal amount
of work.

The most common example of a transaction is the invocation of a URL that is handled by your
application server. In the default configuration, perfino intercepts the method that handles HTTP
calls and constructs a transaction name including the first three segments of the URL. This is an
arbitrary naming strategy that is just intended to get started. In your application, only the first
segment of the URL may be relevant for the business process, or you may need a particular
query parameter in the name.

Also, you will probably not want all URL invocations to become transactions. Many HTTP requests
are for static resources, and those are not interesting in terms of business processes. In perfino,
you can discard transactions based on the name that would be associated with a transaction.
If you generate too many different transaction names, perfino's overload protection [p. 115] is
activated.

The following figure shows how different URLs end up as the same transaction based on a
transaction naming that

+ adds the value of the query parameter "action"
+ adds the fixed text "in shop"
+ adds the second segment of the URL

17

Browser

«»Q

LN

URL time: 300ms URL time: 100ms

N\

/shop/b2b/submit?action=order&p=123 /shop/b2b/submit?action=order&p=234

.

Naming .~ Naming .
A: X a P
order in shop b2b order in shop b2b
Transaction count: 2
time: 400ms

order in shop b2b

Policies

Transactions have associated policies. The policies determine

+ the acceptable timing for a transaction
+ the way errors are detected and handled
+ when to perform method-level sampling

For each violated condition in the policies, you can see transaction details separately in the
perfino Ul. For example, you can inspect slow transactions or transactions that resulted in an
error separately and not cumulated with other regular transactions of the same name.

perfino gets information from the monitored application by instrumenting methods. To keep
the overhead low, very few methods are instrumented. In order to get more detailed information
in the case of a very slow transaction, the policy can start method level sampling [p. 47] for a
transaction once it is clear that it is taking too long.

With sampling, you get a cumulated call tree and hot spots on the method level that show you
where the time is actually spent.
Telemetries

The other fundamental type of data source in perfino is the periodic sampling of scalar values,
like heap size or thread count. Each telemetry [p. 53] can be plotted as a time-resolved graph.
In perfino, telemetries are often shown as sparklines, without defined axes and with a trailing
current value.

There are many standard telemetries in perfino that collect their data from well-known subsystems
of the JVM or popular databases and frameworks. In addition, integer values that exposed by

18

an MBean " can be monitored by perfino. On a programmatic level, you can use the @el enet ry
annotation to define custom telemetries on static methods with a numeric return value.

Thresholds

You will have different expectations with respect to different telemetries. For example, the heap
usage often oscillates around a base line and where a steady increase is a sign of a bug in the
application.

Or, the average duration of JDBC statements usually varies with server load and is an indicator
of the health of the application.

To detect anomalous conditions, you define thresholds [p. 60] with an optional lower and an
optional upper bound. Threshold violations are counted on a per-VM basis or for each VM group.
They do not have actions associated with them. Often, you will not want to take any action for
single threshold violations, but only for a cascade of such conditions.

>

Threshold violation

Telemetry

Threshold violation

Time

Triggers and alerts

Both transactions and telemetries can lead to anomalous conditions: A transaction policy can
identify a slow transaction and a telemetry threshold can be violated.

In order to take action on these conditions, you use triggers [p. 63]. Triggers do not operate on
a per-VM level, they process all recursively contained VMs in a VM group. Each VM group in a
hierarchy of groups has its separate triggers.

For example, you could define a trigger for all VMs that fires when the number of connected
VMs falls below 20. In the same VM hierarchy, you might have a group that only contains database
VMs. In that group, you might want a separate trigger that fires when the number of connected
database VMs falls below 3.

When a trigger fires, it executes its actions. Actions can start data collection, such as full VM
sampling, send emails or create alerts.

Alerts [p. 68] are shown in the dashboard and are the highest level in perfino's pyramid of
concepts:

M https://docs.oracle.com/javase/tutorial/jmx/mbeans/

19

https://docs.oracle.com/javase/tutorial/jmx/mbeans/

Notifications

Actions

Anomaly
detection

Data
collection

Transactions Telemetries

20

Ul

The perfino Ul separates data and configuration. When you log in, you are in the data perspective.
The configuration drop-down in the top right corner gives you access to the configuration.

@ Dashboard VMs = CallGraph |wg VM Data Views &, Inbox Recording & Triggers
. . . General Settings
Period: |Last hour ~ | Time line: |All transactions ~ | VM group: |All VMs ~ ow all alerts]
Log Files
1
E
g 05 g
H 7S
4:20 430 4:40 14:50 15:00 15:10
[configure]
Transaction Mame Average Time - Count Total Time
Normal Slow Very slow
M Error I Overdue No data

[configure] [configure]

Telemetry Name Value Problem Count -
Connected VMs
0
CPU 0
No problems detected
0
Used Heap . 0%
no

The data perspective

The data perspective is divided into several tabs. The tabs are ordered from more general
information on the left to more specific information on the right.

(D Dashboard VMs =& Call Graph |wy VM Data Views ¥, Inbox

After logging in, you see the dashboard where important information about the activity and the
health of the monitored VMs is presented on a single screen. From the dashboard, you can
drill-down into the more detailed "VM data views" by clicking on the items of interest, including
transaction names, problems, sparklines and slices of the policy violation pie chart.

21

perfino

(D Dashboard VMs =& Call Graph |ay VM Data Views @ Inbox

Period: ‘Last hour ~ | Time line: |AII transactions v | W group: |AIIVM5 & ‘ Alert count: 9 [show all alerts]
6k 1
o o
& @
E 2k @
13:10 13:20 13:30 13:40 13:50 14:00 14:10
[configure]
Transaction Hame Average Time - Count
@ demorviens A 162]
@ demorviews IS
F# Nested demo transaction | EITENNNINN 5:c03
@ demotvizwi T | s

M Normal Slow Il very slow
M Error Il Overdue

[configure] [configure]
Telemetry Name Value Problem Count

Connected VMs | 1 % Exchange rate checks via HTTP _.
cPU P 1.1 @ rest/put B9 (3.3 %) very slow

data/load 9 (3.3 %) very slow

Used Heap Ty 223 @ b
@ data/remove B2 (2.9 %) very slow

. . L e | | —— [P .
L . __ -]

The VMs view shows you the hierarchy of all connected VMs, together with selected information
in the form of sparklines.

@ Dashboard VMs =& CallGraph |wy VM Data Views &, Inbox

[CannectedjVMs it | ‘:Last hour ~ | | [T Options ~ ‘ ‘ ER Configure Columns ‘
Mame - Status Used Heap CcPU

~ [AllVMS [showt 3)Ms [11% MB Fo.28 %

~ [J client [show] 2 [VMs 7 12 % MB —f\ 0.2:3 %

Bl RMI_client_1 [127.0.0.1:507... [show][sctions] ‘@ since 1 minute f 11 % MB M 0.18% %

Bl RMiclient. 2 [127.0.0.1:507... [show]factions) @ sincelminute | [13% MB | P 0.2 %

~ [server fsoul 1)VMs ' 9% MB b 018 %

Bl RMiserver [127.0.0.1:50700] showl [actions] = @ sinceiminute | __ [9% MB — boa¥B %

gh save HPROF memory snapshot

Take memory snapshot

&= Savethread dump

WM Record fine-grained CPU data in profiling mode
¥ Record DK Flight Recorder snapshot

md RUnGC

f Detach VM for |Profiler

22

The "show" context action takes you to the "VM data views" for the selected group or VM and
provides quick access to all recorded data that is available for your selection. Like in the
dashboard, clicking on the sparklines takes you to the full telemetry views in the "VM data views".

The call graph focuses on remote calls between monitored VMs. Each VM is a node and remote
calls like EJB, RMI and web service invocations are edges in the graph. Clicking on nodes and
edges shows further information.

(D Dashboard VMs & CallGraph |ay VM Data Views @ Inbox

@, Q,) Show | 10 minutes ~ | upto | Now v Auto-update | € >

3

External requests

& transactions & transactions

12019 ms 12,021 ms

== =
= —
] [=]

RM_client 1 AML_client 2

144 transactions 208 transactions

117 ms 300ms

jbe_uri_ demeo AMI_sarver

The VM data views tab holds all views that show data for a single selected VM or a group of
VMs. The actual VM selection and the desired view can be adjusted in the view selector.

O3 Al jvms Q

¥ Transactions

* Probe Hot Spots

b Telemetries

¥ Custom Telemetries
Method Sampling
Threshold Viclations
Alerts
Memary
MBean Browser
Snapshot Files

The inbox view shows all messages that have been sent to you. For example, if you start full-VM

sampling on a particular VM, a notice will be sent to your inbox once the snapshot is ready for
downloading.

If there are unread messages in your inbox, you will see a red notification in the tab area.

23

®

(D Dashboard VMs & CallGraph |ay VM Data Views @ Inbox

Date - Type Mame

2020-05-22 12:06:42 Memory snapshot RMI_server

4

o)

The inbox notifies you about new messages and snapshots. If you delete a snapshot from the inbog, it is still available in the data views. In the "Snapshot
Files" view you can permanently delete snapshots.

Show all snapshots in the "Data Views" section

Configuration

Configuration is divided into two parts: general settings and recording options. If you want to
view and edit general settings, you have to be an administrator. Recording options can also be
edited by the "profiler", but not by the "viewer" access level.

Both general settings, as well as recording options are modal panels. If you did not change
anything, you have to click on the "Go Back" button to return to the data perspective.

(® GoBack

If you made a change, the "Go Back" button is replaced by Apply Changes and Discard Changes
buttons. No changes to the configuration have any effect before this confirmation.

) Apply Changes (®) Discard Changes

General Settings

In the general settings you administrate the perfino server. This includes

+ the users and their access levels
+ the license keys

+ data consolidation options

+ SMTP access

24

fg Users and Roles £ License Keys &8 Global Settings <& Export/Import

In addition, you can export and import the entire server configuration.

Recording & triggers

Recording options and triggers are configured for each VM group. You can click the edit button
or double-click on any column to jump directly to the desired step.

@ S B e v
Recording Options - Click on "Go Back" to return to the data view @ Go Back
Group Transactions Sampling Options Telemetries Thresholds Triggers @
- [AlljvMs 0 0
~ 3 pemo 2 2
~ 3 Workers 1] 1 ®
&8 JoBC 0 0
= ms 0 0
= web 0 0
&S
<

Use drag and drop to reorder group configurations

Group configurations inherit recerding settings from their parent group unless settings are cverridden. Triggers and thresholds operate on all recursively
contained VMs and are not overridden.

The Al JWMs group is for JVMs at the top-level, New groups can be added here or are automatically added when a JvM connects with a specified group.

The configuration contains recording options as well as threshold and trigger settings. Recording
options are sent to the monitoring agents in each connected VM. They are inherited to nested
VM groups and nested VM groups can override settings in their parent groups.

25

|

Create Group Configuration

o Please enter the details of the new group configuration.

1. Group Settings

Group name *
The group name must not contain slashes. The group will be added at the selected level.

Group type * VM Group
VM Pool

VM pools zllow you to connect any number of exchangeable VMs with the exact same configuration.
Override settings for the following categories:
Transactions
Method Sampling
Options

Telemetries

Thresholds and triggers operate on data from all recursively contained VMSs in this group. These settings are not overridden.

Double dick on a table column in order to go directly to the desired step.

Cancel Bad Next

Thresholds and triggers, on the other hand are handled in the perfino server and are processed
for the VM group for which they have been defined. They operate on all VMs that are contained
recursively in their VM group. If you need additional thresholds or triggers that operate only on
a nested VM group, you can define them on that group.

User settings

The user drop-down in the header shows selected information about your account and the
current session and contains the Logout button that terminates your perfino session.

User settings, like your name and password can be adjusted by following the "Account Settings"
link. If your access level is "profiler", this is where you can see the VM groups that you are allowed
to modify.

26

| I Edit your account settings.

Full Name | Tester

Ema integration_test@ej-technologies.com
Change password

Old Password

Password

Confirm Password

Dark mode

If you prefer a dark Ul, use the theme switcher in the header. The setting is persistent for the
current browser.

perfino

Alert count: 9 fsho

Count

aHTTP 3,738 (14 %) very slow

27

Transactions

Configuration

Transactions are configured in the recording settings. When you edit a VM group or a VM pool,
the first displayed step in the wizard shows the transactions settings.

Edit Group Configuration x

1,9
| yl Please modify the details of the existing group configuration.

1. Transactions 2. Method Sampling 3. Options 4, Telemetries 5. Thresholds 6. Triggers
Business Transaction Maming Policies @
- @ Web requests “?
%
4
- @ E|B invocations
2 ®

+ @ Sspring service invocations
i
£ Annotated invocations
~ 3it DevOps annotated invocations

*

£ Pojo invocations

- g% RMIcalls
r
*
Use drag and drop to reorder business transactions. Higher items are matched first. Policies and transaction naming fall through to the first defined matching item.
Cancel Back Next Finish

If no transactions are defined for a nested VM group, VMs get their configuration from the nearest
ancestor group where transactions are defined. The "All VMs" configuration always has associated
transaction definitions and is always a successful last stop for this search in the hierarchy.

Save Business Transaction Set X

=—=p Please enter a name for the business transaction set.
H You can add saved business transaction sets to other VM group
[]

configs.

Name™ ’ Shop transactions]

Saved business transaction sets

Business Transaction Set - @

28

When a nested group overrides transaction settings, it overrides all of them and there is no
merging with the settings of a parent group. If you want to reuse selected definitions from a

parent group, flsave them to a set and ¥ include them in the configuration of the nested group.

A transaction definition selects a segment of all possible transactions in its subsystem. For
example, web transactions are defined with a URL wildcard or regular expression. Each transaction
definition has an optional associated naming scheme and optional associated policies. For both
naming and policies, perfino keeps looking in the list of defined transactions until it finds a
matching entry.

Transaction definitions

(D | URL shop/order/*

—-—»C Policy j

@ | URL shop/*

This allows you to define a series of transaction definitions that all have different naming schemes
while keeping common policy definitions for a group of transaction definitions. Keep in mind
that the transaction matching in perfino takes the first match, so more generic filters should be
lower in the list of transaction definitions.

There are a number different transaction types in perfino. All types fall into two different
categories: predefined transaction types and custom transaction types.

Predefined transaction types

The most common mechanism that starts a business transaction is via a URL invocation. In
perfino, this is called a web transaction. In the default configuration, perfino intercepts all URLs
and creates transactions for them. For your application, you will want to limit the intercepted
URLs to those that are meaningful from a business perspective. To do that, you can remove the
transaction definition for the URL wildcard "*" and add your own specific transaction definitions.

Another way to limit transaction matching is to use the "Discard" flag. In that case, any matching
URLs will be excluded and no further matching will take place.

29

I:m:hllllhlhmnsl ‘

Please enter the details of the new business transaction.
Monitor web requests that come from outside the JvM

1. Filter

Match requests fstatic/*® ™ |wildcard comparison

Custom description *

In the list of transaction definitions, the filter expression will be shown as the name of the
transaction definition. Often, this is not descriptive enough. Use the "Custom description" check
box shown above to enter a meaningful name. This is only used in the configuration and not in
the displayed data where the transaction naming determines the name of the transaction.

The name of a transaction is composed of a chain of naming elements. The list of available
naming elements depends on the transaction type. For web transactions you can use specific
elements like "URL query parameter" and "URL segments".

An important consideration when defining complex transactions is what kind of nested
transactions should be allowed. Perfino does not record a directly nested transaction that has
the same name. More restrictive options are to prevent nested transactions

+ that match this entry

No nested transactions will be created if the nested transaction would originate from this
transaction definition.

+ with the same group name

If you select this option, you have to configure a group name for this transaction definition.
For example, you might have different entry points for a particular business transaction from
a web transaction and from an EJB transaction and the URL handler always calls the EJB. If
you do not want to see the EJB as a nested transaction, you can assign the same group name
to the web transaction and the EJB transaction.

+ of the same transaction type

This option is suitable if you only want to see entry points and not the internal structure. For
example, EJBs will often call other EJBs. This reentry mode prevents a tree of nested transactions
in that case.

 all further entries

Use this option to prevent any kind of nested transaction if a transaction is created from the
current transaction definition.

The reentry inhibition only applies to the transactions that would be directly nested. If a nested
transaction is allowed, its own reentry inhibition setting will be used for the next nesting level.

EJB transactions are created from calls into public methods of an EJB that is annotated with
@t at ef ul , @Bt at el ess, @/kssageDri ven or @i ngl et on. Spring service invocations are
for calls into beans that are annotated with @onponent, @ontrol | er, @Repository or

30

@Ber vi ce. You can limit transaction recording to a sub-set of those transactions for both EJB
and spring transactions.

When creating transaction definitions, both these transaction types can be filtered with respect
to class or package name. The discard mechanism is useful to exclude certain classes that are
not generating significant data. By default, perfino shows all EJB and Spring service invocations.

Create EJB Invocation x
Please enter the details of the new business transaction.
Manitor EJBs of selected classes.
1. Filter
Class name com.mycorp.shop.* l' Q, choose | |wildcard comparison v
Custom description *
Discard transactions
E|B types | Stateless E|Bs

v Stateful E)Bs
| Singleton E|Bs

+| Message-driven E|Bs

RMI transactions handle incoming RMI calls into a VM. Like for EJB and Spring transactions, you
can use a class filter to include or exclude implementation classes. The default configuration in
perfino shows all RMI invocations.

Custom transaction types

There are many frameworks where specific interceptions can capture all important business
transactions. Also, your own code will often be structured in a such a way that a small set of
methods will map to your business transactions. perfino offers three mechanism for monitoring
these cases. Configuration of these transaction types is more elaborate so that each of them
has its own chapter in the advanced topics.

For an annotated invocation transaction, you specify a particular annotation class name. In
the further configuration [p. 116] you can decide whether the annotation should apply to classes
or methods and how inherited classes should be handled.

DevOps transactions are defined in your code with annotations supplied by perfino. While the
naming is completely specified with those annotations, the policy must be configured in the
perfino Ul. This is the most maintainable way to define complex transactions. See the advanced
topic about DevOps transactions [p. 121] on how to add them to your project.

If you cannot modify the code that should be monitored, POJO transactions allow you to specify
all the same interceptions as DevOps transactions directly in the perfino Ul. See the detailed
explanation of POJO transactions [p. 118] for more information.

Call tree and hot spots

perfino builds a call tree from all recorded transactions. A call tree is a cumulated data structure
that captures all the different sequences in which transactions are nested. If transaction C is
called within transaction A and also within transaction B, it will occur twice in the call tree, once

31

as a child of Aand once as a child of B. Each of these sequences can occur many times, increasing
the invocation counts along the corresponding paths in the call tree.

Palicies: |Split ~ | Remote origins: |Merge ~
Show [10minutes ~ | upto |Now 2 puto-update . € <& | Y Compare
- Total Time - o Avg. Tim
» §® RmiHandler.r time lines 49295 44
@ exchangeRat 1461s 22,748
+ @ demorv 13115 222
+ $F Nested demo transaction [metho 1,309s 222
v B |PasHibernate i68s 222
» B jpec 6,355 ms 924
-!:!- nventory checks via RMI [show remote call] [method samples] 9295 222
-m- Exchange rate checks via HTTP [d f1is 222
3 @ demofview] [me 1,247 s 213
» @ dem 1,166 194
> (@ dem 1.166's 89

Filter: Al 4 a7

The numbers for each transaction - total time, invocation count and average time are displayed
for the selected period. If the period is not fully measured, perfino will tell you the covered
percentage at the bottom of the view. For example, when starting up the perfino server, the
current hourly interval will not be fully measured until a full hour has passed. Similarly, if you
stop the perfino server for some time, this will leave holes in the history with incomplete intervals
at both sides.

Hot spots are the inversion of the call tree, where all occurrences of each transaction are summed
and shown with their backtraces. The invocation counts and execution times in backtraces do
not refer to the transactions, but rather to the number of times the hot spot was called along
this path.

Call Tree Hot spots
Transaction A Transaction C
Count5 Count 4
.- . O ’
.- ée\ K N\)
Transaction C & || Transaction A
Count 3 /! Count 3
> backtraces
'I z/ D
Transaction B K -] Transaction B
Count 2 / hot spot 2 _.___|.Count1
/ invocation <
) counts

’

Transaction C]

Count 1

32

To emphasize the point about backtraces, all hot spots have a child node called "Cumulated
backtraces". Searching for transactions is done with the filter bar at the bottom of the view. Many
views in perfino have such a filter bar.

Paolicies: |Split Show |10 minutes ~ | upto |Now o Auto-update < & | ¥ Compare
Hot Spot Total Time - nvocations Aug.Time
v ¥ Inventory checks via RMI [4951s 1,185 4,178 ms
~ £ Remote demo transaction 3114s 3,547 878 ms

- [®] Cumulated backtraces 3114s 3,547 878 ms

~ ¢ RmiHandler.remoteOperation [method samples] 3114s 3,547 878 ms

B called from pool Demorweb 26765 3,045 878 ms

Called from pool Demo/Workers/|MS 888 s 502 872 ms

» ¥ Exchange rate checks via HTTP 2415s 4,732 510 ms
- @ exchangeRat 15345 23,492 65,313 ps
- Cumulated backtraces 1.534s 23,492 65313 ps
Called from group Demo/Workers [zh 1,147 s 17,570 65,294 ps
E Called from pool Demo/Web B2s 5,087 65,307 s
Called from pool Demo/Workers/JMS [show remote origin] 54,900 ms 835 65,748 ps

FIG'I

El

In order to give you a chronological context for the selected interval in the call tree and hot spots
views, a transaction timeline is shown at the bottom where the current interval is highlighted.
You can also use this timeline to select another interval by clicking on a data point. When you
display a timeline for a single selected transaction, the total transaction timeline is replaced and
can be restored by clicking on the close button.

Policies: |Split ¥ | Remote origins: |Merge ¥

Show |10 minutes ¥ | upto |Now 2 Auto-update | € & | ¥ Compare
Transaction Total Time - nvocations Avg. Time
» §* RmiHandler.remoteOperation [me: 49295 3,544 1,391 ms
@ exchan 14615 22,748 64,247 s
b (@ damah 1311s 222 5808 ms
Filter: | All 2 il

Time line of | Transactions = show |3hours ~ 8 & |upto |Mow ~ <

Transactions in the dashboard

Frequency, average time and total time of your most important transactions are key measures
for your application. To give you a quick overview in that respect, the dashboard contains a
transaction table that shows the most important transactions with these numbers from the last
hour or the last day. You can sort by the different columns and the configure button at the top
of the table allows you to select which of the columns should be used as a the "primary measure"
and show a histogram next to the numeric values.

In the transaction table, transactions are not shown in the form of a call tree, but completely
flat. This means that it also shows transactions that are not entry points but only invoked as

33

nested transactions. For a detailed analysis, click on the transaction row to go to the call tree
view in the "VM data views" tab.

Average Time - Count otal Time

6,122 ms 8 m
6,049 ms 1,138 114m
nsaction 6,000 ms 5,604 560 m
5,994 ms 1,145 113 m
5,970 ms 104 09m
5,905 ms 1,070 105m
4,952 ms 954 47245

The drop-downs at the top provide three ways to adjust the range of the displayed transactions
in the dashboard:

* Period
By default, the dashboard shows the last running hour. Alternatively, you can switch to the
last running day.

* Request type
By default, all transactions are shown. Alternatively, you can restrict the display to web
transactions only.

*+ VM group

By default, all monitored VMs are shown. With the "VM group" drop-down, you can restrict
the displayed data to a particular VM group and its nested groups. For example, if you select
group "A/B", then all VMs that are contained in "A/B" are shown, but also VMs in "A/B/C".

Overload protection

A common problem with new perfino installations is that web transactions have not yet been
configured to map to high-level business transactions. As a consequence, too many distinct
transaction names are being generated. In that case, perfino's overload protection [p. 115]
mechanism caps the maximum number of transactions names and sends you an inbox message
with instructions on how to fix this condition.

34

Policies

Configuration

Policies detect anomalous conditions with respect to transactions. Each transaction
definition [p. 28] has associated policy definitions.

Create Web Request x

Please enter the details of the new business transaction.
Maonitor web requests that come from outside the VM

1. Filter 2. Naming 3. Policies

Define policies

Slow events 500 ™ % slower than average ~
Very slow events 1000 ™ | % slower than average v
Overdue events 500000 ™ | ms and slower =

v split transaction tree for paolicy violations
Transaction errors | Error throwables (v Runtime exceptions Checked exceptions
v Logged errors [Logged warnings

Ignored HTTP error codes

sampling for policy violations Very slow and more severe v
Periodic sampling every 3 * |Hours ~
End user experience monitoring | 20 * 9 of all web requests

Cancel Back e Finish

Policies create the following anomalous transaction states:

+ Slow

The threshold after which a transaction is classified as slow can be specified as an absolute
time or as a relative percentage value with respect to the average duration of transactions
that are generated by this transaction definition.

+ Very slow
Another time-based threshold like "Slow", only for a more severe category. You can partition
"Slow" and "Very slow" so that "Slow" transactions can occur without notifications and "Very
slow" transactions trigger notifications.

+ Overdue
After a third time-based threshold which is usually an absolute time and much larger than
the "Very slow" threshold, you can view a transaction as deadlocked or hanging.

* Error
Transactions that result in an error require special attention. There are three sources of errors:

35

1. Exceptions

Exceptions derived from j ava. |l ang. Error (errors), j ava. |l ang. Runti neExcepti on
(runtime exceptions) and j ava. | ang. Except i on (checked exceptions) can be activated
separately. Checked exceptions are usually handled by the application and do not necessarily
result in a transaction error.

2. Logged errors

If your application logs an error with a logging framework, perfino can mark the transaction
with an error. java. util .| oggi ng, log4j, |Boss logging and Logback are supported by
perfino. Optionally, you can also configure that warnings result in a transaction error.

3. Specific conditions

Certain transaction types have their own built-in error conditions. For example, as shown
in the screen shot above, web transactions can use the HTTP status code to detect an error.
By default, all status codes >= 400 are handled as errors. If some of these status codes
should not be viewed as errors, you can list them here.

If policies are not defined for a transaction definition, perfino continues in the list of transaction
definitions until it finds a matching entry where policy definitions are enabled. This allows you
to define the same policies for multiple transaction definitions, in the most extreme case with a
"catch-all" entry that has no naming definition, but only policy definitions.

Sometimes, you want to go the other way and define more granular policies for certain
transactions within a single transaction definition. For example, you might have a single EJB
transaction definition which captures all your business transactions. If the acceptable durations
depend on the transaction name, you can define policy specializations to avoid having to re-add
the transaction definition and its naming scheme multiple times.

Edit Group Configuration x
TR
| yl Please modify the details of the existing group configuration.

1. Transactions 2. Method Sampling 3. Options 4. Telemetries 5. Thresholds 6. Triggers
Business Transaction Maming Policies @
~ (@ Web requests)

*
~ @ EJB invocations 4
(+] ~ com.mycorp.shop.* v v @
[+] F order *

+

A @ Spring service invocations

+

Unlike the parent transaction definition, which filters classes in this case, the policy specialization
filters on the result of the transaction naming.

Create Policy Specialization x

Please enter the details of the new policy specialization.
Policy specializations allow you to discard selected transactions based on name patterns or apply different policy

settings to them.

1. Filter

Match transaction names [order *]‘ Wildcard comparison v | & Comma-separated

Custom description *

Discard transactions

Policies in the call tree

Both call tree and hot spots views have a policy mode drop-down at the top. By default, the call
tree is split for different policy violations. For example, this means that you can see slow
transactions separately from normal transactions. This is important, since the cause of a slow
transaction will often be visible from nested transactions or a slow database statement.
Transactions with policy violations show their transaction type icon in the color of the policy
violation so you can easily spot them in the call tree.

Paolicies: Remote origins: |Merge ¥

Show |10 minutes ~ | upto |Now = Auto-update | € s | ¥ Compare
Transaction Total Time - mvocations Avg. Time
» §® RmiHandler.remoteOperation [method samples] [time lines] 49295 3,544 1,391 ms
@ exchangeRate [method samples] [time lines] 14615 23,748 64,247 is
» (@ demotview? [me [time lines] 1311s 222 5,908 ms
» (@ demotview] [me time lines] 1,247 s 213 5,857 ms
» @ demoiview3 | [time lines] 1,1665 104 6,012 ms
» (@ demolviews | 11665 189 6,169 ms
» @ demolviewd [me! 11555 195 5,927 ms
+ £ Demo JMS message [met 794z= 168 4,726 ms
3 | = 6 72416 ms
» $# Demo JDBC Job [method sa g89s 149 2,409 ms

& docs/invairaservice m b6 174 ms 160 601 ms

When you set the policy mode to "merged", all policy splits are added so that there is only one
transaction of the same name and type on the same call tree level.

In the screen shot above, you can also see the policy selector at the bottom the view. By default
itis setto "All". If you choose a particular policy violation type, the tree will be filtered immediately.
For example, selecting "Error" will show all transactions that have been marked as an error,
regardless how deep they are in the call tree. These transactions will be expanded and all ancestor
nodes are shown, even if they are not transactions with errors. When you also add a filter text,
only transactions with errors will be searched for the filter expression.

Policies in the dashboard

The dashboard is your first stop for checking the health of your application. That's why policy
violations are featured prominently in the dashboard. The problems view shows transactions

37

with policy violations. By default, "Overdue", "Error" and "Very slow" are displayed. With the
configure above the problems view you can select different policy violations and set absolute
and percentage limits for each policy violation type. As in the transaction table, problems can
originate from transactions that are not entry points but only invoked as nested transactions.

For a detailed analysis, click on the problem row to go to the call tree view in the "VM data views"
tab.

Count -

3,717 (14 %) very slow

To visualize the proportion of policy violations with respect to the total amount of transactions,
a policy pie chart is shown next to the transaction table. Numbers and percentages are shown
as tool tips and by clicking on the legend entries, you can hide selected policy violation types.

Clicking on the slices of the pie chart will take you to the call tree view in the "VM data views" tab
and set the filter drop-down below the call tree to the selected policy violation type.

38

Cross-VM Monitoring

One of perfino's core features is the ability to track calls between monitored VMs. No configuration
is necessary to enable cross-VM monitoring. As soon as an outgoing and incoming call of a
supported subsystem can be matched between two monitored VMs, perfino shows it as a remote
call in the call graph and in the call tree.

The following remote call mechanisms are supported:

* RMI
+ Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
+ Remote EJB calls: JBoss 7.1+ and Weblogic 11+

Call graph

The natural representation for remote calls is the call graph, where each pair of VMs that
participate in a remote call are connected by an edge. In addition, two other node types are
present in the call graph that usually represent calls to and from external processes:

« External calls

The "world" node shows external calls that create transactions in monitored VMs, such as URL
invocations.

+ Databases

Database nodes show database operations. If perfino detects that two VMs are using the
same physical database, it only shows a single node in the call graph.

@)\ Q Q Show |10 minutes ~ | up to |Now o Auto-update | €

3

External requests

O,

[]
==
=]

AMI_client R client_2

144 transactions | 208 transactions | 144 transactions | 208 transactions

117 ms M7 ms 300ms

o
==
=3
—=

jdbe, Al sarver

When a node or an edge is selected in the call graph, a detail panel is shown that holds several
tabs with information about the associated transactions. The number and names of the tabs
depend on the selected object:

39

External calls node

The only tabis the "Transactions" tab which shows the call tree of all transactions with external
origin. Transactions are only shown in the first neighbor nodes, not across the whole graph.

Database node

The only tab tab is the "Remote origin hot spots" tab which shows the database operations
with cumulated backtraces. To restrict displayed data to a particular VM, select an incoming
edge instead.

VM node

The "Remote origin hot spots" tab shows the duration and count of handled remote calls
mapped to the originating transactions from other monitored VMs. Backtraces are resolved
up to the leafs that specify the VMs where the calls originated. The "Transactions" tab shows
the call tree of all transactions executed in the selected VM. Finally, the "Remote call hot spots"
tab shows the duration and count of remote calls originating in the selected VM. The top-level
hot spots are the transactions that cause the jump into a different monitored VM. Check the
outgoing edges to learn more about those calls.

Edge

The "Call site hot spots" tab shows which transactions in the source node caused remote calls
along the selected edge together with cumulated backtraces. For edges into "Database" nodes,
this is the only tab and shows database operations instead of transactions. The "Execution
sites" tab shows the call tree of the transactions that were caused by the selected edge. For
edges starting at the "External calls" node, this is the only tab.

Q Q @ 2 Show | 10 minutes ~ | up to |Now > Auto-update | €

3

External requests

RMI_client R client_z

1 1 v

[Ttransactions [B Remote Call Hot Spots

Hot Spot Total Time - nvocations Avg. Time

$¥ UiTestRun.runClient 62,539 ms 208 300 ms

Call tree

In the call tree, you can recognize transactions that cause a remote call by the "show remote
call" link that is shown next to the transaction name. When following such a link, it is advisable

to select the "Merge" option for the policy split [p. 35], otherwise the numbers on the remote
side may not match the numbers in the source VM. This is because policy splitting is not tracked

40

across VMs. In any case, there may be small discrepancies due to calls that are close to period
boundaries which may be assigned differently by source and target VMs.

Paolicies: Remate origins: |Merge ¥

Show |10 minutes ~ | upto |Now e Auto-update | € & | ¥ Compare
Transaction Total Time - mvocations Avg. Time
> ﬁ‘ RmiHandler.remoteOperation [method samples] [time lines] 49295 3,544 1,391 ms
(@ exchangeRate [method samples] [time lines] 15335 23473 65,326 ps
~ @ demoiview? [metho [time lines] 1311s 222 5,908 ms
A i} Nested demo transaction [method samples] 1309s 222 5,898 ms
v B |PasHibernate |] 222 757 ms
Fe.355ms 924 82,635 ps
emote 9295 222 4,188 ms
$# Exchange rate checks via HTTP [show remote call] [method samples] 111s 222 500 ms
» (@ demofview! [method samples] [time lines] 1,289s 216 5,968 ms
» @ demolview3 [me! mples] [time lines] 1,166 194 6,012 ms
v (@) demin/uiewS [method samries] ime lines] 1.166s 189 6.169 ms
Filter: It

Clicking on the "show remote call" link opens a new dialog that shows the call tree of transactions
in the remote VMs that were started by the selected transaction. At the top-level, the call tree is
partitioned into VM groups.

Remote Calls x

L View Remote Calls
Below you see transactions in different VMs that were triggered by the selected transaction. Transactions close to the boundaries of the selected period
may not be included.

Transaction Total Time - nvocations Avg. Time

- group Demo/Workers

~ ¢ RmiHandler.remoteOperation 925s 663 1,396 ms
+ £ Remote demo transaction 925s 663 1,395 ms
» B jpec 5025 663 757 ms

» $F Exchange rate checks via HTTP [show remate call] 339s 663 511 ms

The call tree only shows the transaction in the target VMs. If there are further remote calls, you
will see "show remote call" links, just like in the original call tree view. Clicking on those links
replaces the call tree in the dialog and shows a Back In History button that can be used to return
to the previous level. If the button disappears after clicking it, you are now looking at the first
level.

It is also possible to move in the opposite direction and ask which remote calls in other VMs
started transactions in the currently selected VMs. First, change the remote origins drop-down
to "Split". By default, that drop down is set to "Merge" and you cannot see the remote origins.
With the "Split" setting, "Called from ..." nodes appear at the top-level containing transactions
that were started by remote calls from other monitored VMs. If you are looking at VM group or
VM pool data, a split is performed for each VM group, but not for individual VMs. If the data is

41

not granular enough, consider making your VM group structure more granular
at the data for a single named VM, the split is performed for each remote VM.

Paolicies: |Merge ¥ = Remote origins:

Show |10 minutes “ | upto |Now 2 Auto-update | €

Transaction
~ * RmiHandler.remoteOperation [method samples]
- 3:1' Remote demo transaction [method samples]
=0l
i} Exchange rate checks via HTTP [show remote call] [method samples]

@ exchangeRate [method samples]

3 @ demo/view2 [method samples] [time lines]

3 @ demo/view3 [method samples] [time lines]

3 @ demo/view1 [method samples] [time lines]

3 @ demo/viewd [method samples] [time lines]

v B called from eroun Nemofnrkers. fshow remete arigin

Filter:

>

[
4
|Q
=]
B
T

=
i
|
=|
B
4

5]
wn

Invocations
8132
3,045
3,045
3,045
3,045
5,087
225
205
209
193
17.570

.Ifyou are looking

Avg. Time
562 ms

1,394 ms
1,394 ms
753 ms

515ms

65,307 ps
5,909 ms
6,021 ms
5,861 ms
5,959 ms

65.294 Us

Similarly to remote calls, clicking on the "show remote origins" link brings up a modal dialog. In
the dialog, the count and duration of the selected transaction is attributed to the remote
transactions that started it. The data is presented as hotspots with the innermost transactions
from the originating VM at the top level. Analogous to the "remote calls" dialog, you can jump
further back in a chain of remote calls when you see a "show remote origins" link next to a
transaction. The Back In History button brings you closer to the original transaction.

L~ View Remote Origins

Below you see z list of remote origins that triggered the selected transaction. When you open the tree, you see further back traces in the same VM.
Transactions close to the boundaries of the selected period may not be included.

Hot Spot
- {! Inventory checks via RMI
= Cumulated backtraces
» £ Nested demo transaction
@ demosview2
(@ demosviews
@ demosview!
(R demosviewd

(@ damnfuisws

Overload protection

g
i
=l
3
i
“

Invocations
3,045
3,045
3,045
672

614

626

579

554

Awg. Time
1,394 ms
1,394 ms
1,394 ms
1,396 ms
1418 ms
1,389 ms
1,374 ms

1381 ms

If you monitor many VMs that all call each other, the number of the remote call sites grows with
the square of the number of VMs. Remote call sites have a substantial overhead, since the
transaction call trees have to be split for each remote call site. If too many distinct remote call
sites are being created, perfino's overload protection [p. 115] mechanism prevents excessive

resource usage.

42

Probes

Transactions typically use external resources that are often the cause for performance problems.
The most prominent example is JDBC. Just looking at the name of a slow transaction may not
generate any insight, but if you can see the SQL statement that is responsible for most of the
time, you can often find the cause of the slowness right away.

perfino records this kind of data with probes. Probes generate payload data that is attached to
the currently running transaction. If no transaction is running, the data is discarded.

Configuration

To see the list of available probes, you can edit the recording settings of a VM group and go to
the "Options" step. Most of the probes are for databases or messaging systems. You can switch
off subsystems that you are not interested in. For example, if you use JPA, but do not want the
overhead of measuring the duration of JPA calls, you can deselect the "JPA/Hibernate" check box.

Edit Group Configuration x
1y
| yl Please modify the details of the existing group configuration.

1. Transactions 2. Method Sampling 3. Options 4. Telemetries 5. Thresholds 6. Triggers
Retransformation type Retransform classes on all configuration changes w7
Record periodic heap snapshots ¥ every | 24 * hours
Recorded probes|
| JDBC

Resolve non-prepared statements separately

| JPA/Hibernate

«| Mongo DB

| Cassandra

v| HBase

w| HTTP Client
Track HTTP calls between VMs | All URLs X @
Record HTTP calls in probe All URLS 2 @
Time measurement Including response body consumption ~ h

Cancel Back Next Finish

Probes in the call tree

Every transaction that performs an operation measured by a probe shows this information as
child nodes in the call tree. Each probe type has a separate grouping node with the name of the
probe.

43

Palicies: |Split ~ | Remote origins: |Merge ~

Show |10 minutes ¥ | upto |Now e puto-update | € >

Transaction

» g* RmiHandler.remoteOperation [method samples] [time lines]

@ exchaﬂgeRaIe [method samples] [time lines]

A @ demo/view2 [method samples] [time lines)

- ﬁ- Nested demo transaction [method samples]
v B |PasHibernate
-8

SELECT * FROM ORDER O WHERE O.DATE >=7 [show]

INSERT INTO ORDER (ID, NAME, OPTIONS) VALUES (7, 7, 7) [show]

INSERT INTO CUSTOMER (ID, NAME, OPTIONS) VALUES (2, 2, 7) [show]
INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID) V... [show]
NEIETE ERMM MRNER CHISTOMER WHERE NRNER 1M = 7 Iehad

Filter: |All 4

Often, the description of the operation is very long, like a complex SQL statement with many
output fields, joins and conditions, and the finite length of the table column prevents further
inspection. In this case, click the "show" link in the same table tell. A dialog will be shown, where

Total Time -

fees

6,355 ms
4311 ms
13,890 ms
13,628 ms
13,403 ms

579 ms

Invocations

3,544
22,748
222
222
222
924
222
222
222
222

18

you can scroll through the payload data and copy it to the clipboard.

Entire text of the selected JDBC call

INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID) VALUES (7, 7)

Probe hot spots

Sometimes your focus is not on transactions, but on the probe data. For example, when trying
to speed up your database, the question is: What are my slowest database operations? For that
purpose, perfino offers the probe hot spot views. Each probe has a separate view of this kind

where a list of operations is shown together with cumulated backtraces.

44

Avg. Time

1,391 ms
64,247 us
5,908 ms
5,898 ms
757 ms

82,635 ps
134 ms

62,568 Us
61,436 s
60,374 s
32.220us

Policies: |Split ~ Show |10 minutes ~ | upto |Now o Auto-update < & | ¥ Compare

[All transactions]
Hot Spot Total Time - mvocations Avg. Time
» B SELECT iid, i.availability, i.name FROM inventory | WHERE i.del... [show] (tme | 061 3,544 751
= g SELECT * FROM ORDER O WHERE O.DATE >=7? [show] [time lines] i54s 1,016 15
+ [&] cumulated backtraces 154s 1,016 15
+ £ Nested demo transaction [method samples] B3s 1,013 15

ms
1ms

1ms

1ms

(@ demolview? [mem Baztims 222 154 ms

B2,030 ms 213 150 ms

29,744 ms 195 152 ms

B9,258 ms 194 150 ms

8,468 ms 189 150 ms

» [Very slow] Nested demo transaction [method samples] 542 ms 3 180 ms

v B SFLECT SUMIn.orice * n.auantityl FROM customers ¢ | FETI0IN.... Tshoud time | B85 135 763 ms

Filter:

E

The probe hot spots view can be filtered on a per-transaction basis. By default, cumulated data
for all transactions in the selected time interval is shown. When clicking on the Choose transaction
button, you can select one transaction from which the probe hot spots should be taken.

Select Transaction x

Select a transaction

e All transactions
Selected transaction

Probe data granularity

Probe operations can be extremely frequent and they usually don't do the same thing over and
over again. perfino makes an effort to modify the displayed name of a probe so that frequently
varying information is replaced with placeholders. Imagine a loop of SQL queries where an 1D
varies in each statement. Showing the raw SQL in the Ul would mean that perfino would potentially
have to remember millions of SQL statements per hour.

This is why perfino by default does not show SQL for JDBC statements that have been created
with the createStatenent (...) method. Rather, perfino shows those operations with a
description of "unprepared select statement". SQL is only shown for prepared statements, without
resolving the single parameters. If you do not use prepared statements and need to see more
detail, the "Resolve non-prepared statements separately" option in the probe configuration
enables SQL recording for all unprepared statements. Perfino will then try to replace literals in
the SQL string with a placeholder to limit the maximum number of distinct SQL statements.

These considerations only apply to the call tree where data is retained indefinitely at the highest
consolidation level. For sampling, where data is discarded in the medium term, perfino always
records the SQL of unprepared statements.

45

The same strategy with respect to data granularity is used for other databases. For example, in
MongoDB operations, all values are replaced with question marks.

Overload protection

Under some circumstances, the number of distinct payload strings can grow linearly with time,
for example if the prepared statement bodies contain IDs directly and not as bound variables
or if the literal replacement of unprepared SQL statement fails. Too many different payload
strings would overwhelm the system over time and so perfino's overload protection [p. 115]
mechanism caps probe payload strings at a configurable maximum number.

46

Method Sampling

What is method sampling?

Policies in perfino help you to identify slow transactions, but the cause of the slowness is often
not clear, since it usually originates in a subsystem that is not monitored separately. In that case,
you need more information on the method level.

The way perfino gets this information is by periodically inspecting the thread that executes a
transaction and by recording its stack trace. By comparing subsequent "samples", perfino can
build an approximate call tree. It has no information on invocation counts, since it is not possible
to tell if a method is still being called since the last sample was taken - or if it has exited in the
meantime and is being called again. The more time is spent in a method, the better the
information in the sampling call tree is. As such, sampling is a great tool to find hot spots in the
monitored VM.

A A A A Atime4x A
Et Et Et ::> |— B:time 3 xA
i Ii C:time1xA
? ? ? ? D:time 1xA
: : : : >
nA (n+1)A (n+2) A (n+3)A Time

Automatic sampling

perfino can perform automatic sampling for transactions in two ways:

+ Periodic sampling

With periodic sampling, perfino takes one transaction from a particular transaction definition
every couple of minutes and samples it from start to finish. Alternatively, perfino can take
every n-th transaction and sample it. The latter may be preferable for rarely executed
transactions.

+ Sampling for slow transactions

The most interesting samples are for slow transactions, because they let you investigate why
a transaction is slow. perfino can be configured to sample slow transactions automatically.
When a transaction passes the threshold of a policy violation like "slow" or "very slow", perfino
then starts sampling until the end of the transaction. The period of time from the beginning
of the transaction until the policy violation was reached is not sampled.

47

Transaction

Start Policy violation End
A A A
: : Samplin :
(= >
1 1 1)
Time

Both automatic sampling modes are configured in the "policies" step of a transaction definition.

Please enter the details of the new business transaction.
Monitor web requests that come from outside the JvM

1. Filter 2. Naming 3. Policies

Define policies

Slow events 500 ™ | % slower than average ¥
Very slow events 1000 ™ | % slower than average ~
Overdue events 500000 " | ms and slower .

| Split transaction tree for policy violations
Transaction errors | Error throwables (v Runtime exceptions Checked exceptions
| Logged errors (| Logged warnings

Ignored HTTP error codes

Sampling for policy violations | Very slow and more severe v I
Periodic sampling every * Howrs, >
End user experience monitoring | 20 * 5 of all web requests

Cancel Back e Finish

Filters

Method-level call stacks can become very deep. Too much detail is usually distracting, like the
internal call structure of external libraries and the JRE. For each VM group, you can define the
recording scope, either by specifying a list of packages that should be recorded (inclusive mode)
or by listing packages that should not be recorded (exclusive mode). In both cases, the package
filters are recursive.

For the exclusive mode, there are two types of filters:

+ Compact

"Compact" means that internal calls will be excluded from the sampling call tree. If a filtered
class is called as an entry point (like j ava. | ang. Thr ead. run()) or from an unfiltered class,
it will be displayed, but further calls within filtered classes will be hidden. This allows you to

48

focus on the important methods that are in your code and where you are able to change
something. However, you are still able to see calls into third-party code.

+ Ignored
"lgnored" means that filtered classes will be completely removed from the tree.

Edit Group Configuration x
TTRS
| pl Please modify the details of the existing group configuration.

. Transactions 2. Method Sampling 3. Options 4, Telemetries 5. Thresholds 6. Triggers

Enable cross-vM sampling

Minimum sampling duration for overdue transactions | 60 * seconds

Inclusive mode, record only the specified packages
) Exclusive mode, record all but the specified packages

Filter = Type @
com.sun. Compact .

&
Java. Compact

When you add a filter by browsing in archives or connected VMs, it is compact by default. To
change its type to ignored, edit the filter and change the drop-down in the edit dialog.

"o
| yl Please modify the details of the existing package.

Filter* | com.sun.

« Compact filters hide the internal call structure of a package, so
you just see the first call into it

= Ignored filters completely remaove the package from the call tree

Method sampling view

To see samples in the method perfino Ul, you first have to select a transaction and a policy type.
While you can do that with the Choose transaction button, it is usually easier to click the "show
methods samples" link next to a transaction in the call tree or hot spots views.

When choosing a transaction manually, changing the selected policy type to something other
than "All types" shows the transactions for which a corresponding policy violation has actually
recorded at least one sample in the selected period. In the "All types" setting, all transactions in
the selected period are shown regardless of whether a sample has been recorded. In that way
you can select any transaction and tell perfino to record a sample.

49

Select Transaction x

Select a transaction

Show samples with policy type | All types

Choose from transactions Recorded during the last hour v

Transaction
$F Custom transaction in PerfinojdbcjobHandler
$i# Demo JDBC Job
ﬂf Demo |MS message
$¥ Exchange rate checks via HTTP
ﬁi Inventory checks via RMI

$¥ Nested demo transaction

The selected transaction and policy type are shown in the header and the navigation buttons
move between different matching samples. You can use the date chooser to jump to the sample
that is closest to a selected time and date.

Average Multiple WM Record Mare < Method sample at 20-03-11 15:05:02 =
Choose Transaction -Iﬁ- Demao |DBC Job
M\ CallTree /A HotSpots & JDBC
Method Time =
~ com.egjt.demo.server.DemoServer$3.run 61,311 ms
~ com.ejt.demo.server.handlers.PerfinojdbcJobHandler.run (line: 221) 61,209 ms
~ com.gjt.demo.server.handlers.JdbcjobHandler.run (line: 23) 61,174 ms
~ com.gjt.demo.server.handlers.PerfinojdbcjobHandler.execute|dbcStatemen... 61,168 ms
~ com.gjt. mock.MockHelper.runnable (line: 44) 60,035 ms
~ com.ejt.mock.MockHelper.waiting (line: 17) 60,035 ms
ava.langThread.sleep (line: 30) 60,035 ms
~ com.gjt.demo.server.handlers.JdbcjobHandler.execute]dbcStatements (li... 1116 ms
~ com.gjt. mock.jdbc.MockStatement.executeQuery (line: 36) g1 ms
Package filter: | | @ m

The sampling call tree shows methods except when sampling crosses a VM boundary. In that
case, a 5] VM node is inserted. If you want to limit sampling to the current VM, you can switch
off cross-VM sampling in the sampling configuration of the VM group where the transaction is
executed.

Where available, the sampling call tree shows line numbers. To interpret a line number, always
look at the class of the parent item. Intuitively, you would expect the line number on a method
item to show the line number of that method, but that would not be very useful information.
The line number cannot be placed directly on the call site, because each call site can have multiple
children with different associated line numbers.

After the initial inspection of a sampling call tree, you will often want to focus on a particular
package. Modifying the sampling options to exclude all unwanted packages and re-recording
the sample is not a good option, since the package of interest may vary or the performance
problem may not be easily repeatable. To adjust your point of view in the sampling call tree, use
the package filter at the bottom of the view. You can enter a single package, or a list of packages
separated by commas.

50

Packages are included recursively, i.e. if you include com nycor p., then packages like com
nmycor p. pr oj ect areincluded as well. If you want to exclude a particular package, prefix it with
a minus sign. For example, if the classes in com nmycor p. are of interest, but com nycor p.
al gori t hmis distracting, enter

com nycorp., -com nycorp. al gorithm

into the filter bar. To better understand the call structure, the first excluded node between
included nodes is always shown, so even after excluding a package you might see a few
instances of itin the call tree, just not more than two consecutive method calls in such a package.
This corresponds to the "Compact" mode for exclusive filters in the "Sampling" configuration
step.

If the first package in the filter bar is an exclusion (with a prefixed minus sign), then all other
packages will remain visible. If the first package in the filter bar is an inclusion, then all other
packages will be hidden.

The hot spot tab shows the methods where most time is spent together with cumulated back
traces. Note that the set of hots spots strongly depends on the granularity of the measurement
which is governed by the defined filters. Defining different filters in the sampling options or
applying different view filters may change the list of hot spots completely.

WM Record More (Method sample at 20-03-11 15:05:02 &

Choose Transaction | 3 Demo JDBC Job

M\ CallTree A HotSpots & JDBC

61,265 ms
cute|dbcStatements 6,949 s
1,395 s

6,209 s

Package filter: @

For each probe that recorded data during the sampling period, a separate tab is added that
shows the probe hot spots [p. 43].

A callTree A HotSpots & JDBC

Averaging multiple samples

The quality of sampling increases, the longer you sample. Especially for periodic sampling you
collect a large number of comparable samples over time. perfino can average these samples to
give you better statistics that comes closer to the actual execution times. When you click on the
Average Multiple button highlighted in the screen shot above, a modal dialog will be shown where
you can select a range of samples to be averaged.

51

Average Multiple Samples x

Show the average of a time range of recorded samples
E Select a time range in the time series graph below to show the average of multiple samples.

Number of averaged samples: 777 | &

A\ CallTree A Hot Spots

Method Time -
~ com.gjt.demo.server.DemoServer$3.run _ '
~ com.ejt.demo.server.handlers.PerfinajdbcjobHandler.run (line: 230) _
~ com.gjt.demo.server.handlers.JdbcjobHandler.run (line: 23) _
= com.ejt.demo.server.handlers.PerfinojdbcjobHandler.execute)dbcStateme... _
= com.ejt.mock.MockHelper.runnable (line: 44) _
~ com.ejt.mock.MockHelper.waiting (line: 17) _
javaJangThreadsleep fline: 30) Stiems
Package filter: @ m
40
20
0
5. Mar 12:00 6. Mar 12:00 7. Mar 12:00 8. Mar 12:00 9. Mar 12:00

The time line at the bottom shows all available samples. Note that samples are not kept indefinitely
due to their high storage space requirements. The retention threshold can be configured in the
general settings. By clicking and dragging a range in the time line, you chose the samples to be
averaged. The total selected number of samples is shown at the top.

Just like for the single samples, you can switch between call tree, hot spots and available probe
hots.

Manual recording of samples

There may be cases where you require a current sample of a particular transaction and you
cannot wait for periodic sampling or a policy violation that would trigger sampling. For that

purpose, you can use the 8 Record More button in the method sampling view.

Record more samples
@ perfino will record more samples for the selected transaction as

they become available.

Number of samples to be recorded * | 1

You can even request more than one sample which will give you the ability to average the samples
after they have been recorded. For rarely executed transactions, it may take a long time to fulfil
the recording request.

52

Telemetries

perfino observes scalar values from four different types of sources:

+ Counts of entities that are managed by the perfino collector, like the number of connected
VMs or the number of transactions. This is not a direct measurement in the monitored VM,
but an evaluation in the perfino server.

+ Telemetries that are measured inside the monitored VM, like the heap size or the average
duration of a JDBC statement. Many of these telemetries are produced by probes [p. 43].

* MBean telemetries that were configured in the recording settings.
+ Devops telemetries where you have used the telemetry annotation from the perfino API.

Telemetry data view

All telemetries are available from the "VM Data Views". Each standard telemetry has its own
entry under the "Telemetries" node, and MBean and Devops telemetries are added under the
"Custom telemetries" node. The latter is only visible if at least one custom telemetry exists.

Many telemetries are stacked area plots where the single lines add up to a total value. For
example, the "Transactions" telemetry shows the total number of transactions over time, split
into single lines for the various policy violations [p. 35].

Telemetry: | Transactions b 5'-:'.u e, |up

When you activate a telemetry view directly, a 10 minute interval up to the current time is shown.
The data that is displayed here has been recorded with a resolution of one minute. Other
telemetries that do not get its data from the observation of transactions will have a resolution
of 10 seconds. You can move back in time with the navigation buttons at the top of the telemetry
or the hover buttons at the edges of the telemetry itself, but at some point the one-per-minute
resolution will end. perfino consolidates telemetries to progressively more coarse-grained
resolutions and keeps them for progressively longer periods of time. Zooming out to an interval
with a total extent of at least 3 hours, consolidated data points with a resolution of 2 minutes
and a longer historical record are shown. Now you can move back further in time as compared
to the previous higher resolution.

53

oA Show | 3 hours 2 Q Q up to | Now i (

(3

The full table with all display intervals where resolutions and retention times change is given
below:

Display interval Resolution Retention time

10 minutes 10 seconds (1 minute for 6 hours (48 hours for
transaction-based data) transaction-based data)

3 hours 2 minutes 10 days

3 days 1 hour 1 year

30 days 12 hours unlimited

Moving to earlier or later times shifts the starting point of the displayed interval by 1/3 of the
total display range. To skip full intervals, press the CTRL key while navigating.

In between those display intervals, there are many other intervals that just increase the displayed
time extent, but use the same resolution. With the zoom buttons at the top or in the context
menu of the telemetry, you can change the zoom level to view more or less data. Double-clicking
on the telemetry zooms in at the selected point in time, if possible.

Some telemetries have multiple data lines that do not add up to a total value. In that case, there
is a drop-down box above the graph and the telemetries are shown as line plots.

54

(3

Telemetry: | Average Statement Execution Time Show |3 hours W Q Q up to | Now N (

Detailed numbers can be obtained by hovering the mouse over the graph. in stacked area plots,
you can toggle single data lines by clicking on the legend items.

In the context menu of the telemetry, there are actions for jumping to related views at the selected
pointin time. For all telemetries you can jump to the call tree and hot spots views. For telemetries
that are calculated from probes, you can also jump to the associated probe hot spots view.

Sparklines

The VMs view and the dashboard show small versions of the current telemetry data as so-called
"sparklines". Sparklines do not have labeled axes and are intended to give a visual impression
of the recent development of an observed scalar value. The graph is followed by the current
numeric value. The superscript indicates the observed maximum value, the subscript the minimum
value in the displayed time range.

When you select the "Telemetries" or "Custom telemetries" category nodes in the "VM data
views", a telemetry overview is shown. All contained telemetries are shown as sparklines for the
last hour and the last day while the current value together with maximum and minimum values
is shown in a separate column.

In the "VMs" view, you can configure a set of sparkline columns. This allows you to make a relative
assessment of the different VMs and VM groups with respect to the monitored value. Sparklines
can be scaled separately, with a common scale for each group or with a common scale for all
VMs. This is configured in the options popup.

55

Connected [VMs ~ | | Last hour ~ [IT) Options ~ ER Configure Columns

Name - Status Used Heap CPU
| ~ [All VMs [show) 11 VMs T 20% MB e (0,90 § |
~ 3 Demo [= 11 [VMs oy 20% MB 0.95:

- BB et 3)Ms e 17% MB 1.453
127.0.0.1:54372 [e17085... [show] [actions] since 13 minutes 12% MB 3.10%
127.0.0.1:54380 [351307... [show] [actions] since 13 minutes " 7% MB 0.6%3
127.0.0.1:54394 [616984... [show] [actions since 13 minutes 33 3 MB 0.7

» [3 Workers [show] 8 JVMs ™~ 21% MB 0.6%:

In the dashboard, sparklines are displayed in a table rather than as columns. The useful number
of sparkline columns that you can add in the VMs view is limited due to the finite width of the
table. In the dashboard, you can add a lot of sparkline rows without any such restrictions. Rather
than showing data for separate VM groups or VMs, the dashboard only shows data for the
selected VM group.

Telemetry Name Value
Connected VMs 1175
cPU i I B

Used Heap TV 20 MB

Average Transaction Duration vl 7977 ms
JDBC Average Statement Execution Time 269:% ms
JDBC Executed Statements ' 720 / m

As in the VMs view, there is a "Configure" action that takes you to the list of all available
telemetries. The telemetries are grouped into categories. The lower list shows the currently
configured sparklines.

56

Adjust the displayed columns
The lower list shows the displayed columns. Add available columns from the
tree at the top.

Available columns:

* HBase

Statement Execution Time

JDBC Executed Statements

Displayed columns:

Column Name

Used Heap
CPU

Use drag and drop to reorder columns

Cancel

By clicking on a sparkline in the dashboard, the "VMs" view or the telemetry overview, the full
telemetry view is activated with a time interval that most closely corresponds to the interval that
was shown in the selected sparkline.

MBean telemetries

Many application servers and frameworks publish MBeans with values that are interesting for
monitoring purposes. All numeric values that are published by an MBean can be polled by the
perfino agent and become part of a telemetry. To this end, it is not necessary that a JMX server
has actually been opened to the outside. Itis enough if an MBean was registered with any MBean
server internally.

Edit Group Configuration x

1,9
| yl Please modify the details of the existing group configuration.

1. Group Settings 2. Transactions 3. Method Sampling 4, Options 5. Telemetries 6. Thresholds 7. Triggers

In addition to the standard telemetries and the annotated custom telemetries in your code, you can define telemetries that poll values published

by MBeans
Telemetry @
~ Last GC durations [microseconds, scale 1043, averaged) ‘,/;
@ Mark and Sweep [java.lang:name=PS MarkSweep,type=GarbageCollector#LastGcInfo/duration]
@ Scavenge [javalang:name=PS Scavenge type=GarbageCollector#LastGeinfo/duration]
~ Open file descriptors [plain]
& Open file descriptors [Java.lang:type=0peratingSystem#0penFileDescriptorCount]
r
Use drag and drop to reorder telemetry items
Cancel Back Next Finish

57

In the "Telemetries" step in the recording settings, you can add MBean telemetries and their
telemetry lines. The telemetry defines the name of the telemetry, the unit, and its overall behavior
while the telemetry lines define the actual data.

11 'Q Please modify the details of the existing telemetry item.
| yl Define an MBean telemetry that will be shown in the custom telemetries section in the

data views

Name* Last GC durations
Unit microseconds v
Scale (104-n) * -3

v Average values from all VMs in the group

Stack all lines in the telemetry and show an area graph

If the telemetry lines are parts of a total value, you can stack them into an area graph. If the
monitored values from different VMs should be averaged, choose the "Average values from all
VMs in the group" otherwise the values will be summed. Summing makes sense for business
measurements such as "number of logged in users" or the use of a shared resource such as
"number of database connections".

The configurable units are base units and unit prefixes will be added as required. For example,
if you select the "bytes" unit, large values in the telemetry will be shown as "kB", "MB" and "GB"
automatically. Sometimes a scale factor has to be applied to get from the recorded value to the
selected unit. You can add that scale factor as a negative power of 10, i.e. to multiply by 0.01,
the scale factor is 2.

Each MBean line is defined by an MBean object name and an MBean value path. You can most
easily obtain these settings by clicking on the Select button in the MBean line configuration dialog.
An MBean attribute browser [p. 85] is shown that allows you to select a numeric value from one
of the monitored VMs. The configured line names are shown in the legend of the telemetry.

Edit Telemetry Line x
111 'Q Please modify the details of the existing telemetry item.
| yl Add a data line to a telemetry

Line caption * Mark and Sweep
MBean object name | java.lang:name=PS MarkSweep, type=GarbageCollector * | Q, Select
Path to the value * LastGeinfo/duration

perfino will not create the platform MBean server if it does not exist, so if you configure a telemetry
from the platform MBean server, you must call

Managenent Fact ory. get Pl at f or mvBeanSer ver () ;

58

in your application at startup to be sure that the telemetry will work after a restart of the
monitored VM.

Devops telemetries

To monitor any scalar value in your application, you can add a static method that returns that
number anywhere in your code. Then, annotate the method with the @'el enet ry annotation.
You have to make sure that the containing class is actually loaded, otherwise perfino will not
detect the annotated method.

You can display the custom telemetry by going to the "VM Data Views" and locating the telemetry
under the "Custom telemetries" node.

Once an annotation telemetry was detected by perfino, it will always be shown in this list,
regardless of whether the annotated method is currently available in a connected VM. When
you retire such a telemetry, go to the general settings, and click on Configure Hidden Devops
Telemetries. Here you you can hide selected telemetries. Note that the telemetries are matched
by name and not by the annotated method.

For more information, please see the Javadoc of the com per fi no. annot ati on. Tel enetry
class in the api / doc directory of your perfino installation.
Time zones

All displayed times are expressed in the time zone of the server. If you are in a different time
zone, there will be an offset. perfino detects this condition by inspecting the time zone provided
by the request headers from your browser. In that case, the current time with an explicit time
zone is shown in the header.

14:11 CET

59

Thresholds

Thresholds detect anomalous conditions for telemetries. Threshold violations are not directly
coupled to alerts or other actions, they just increase an associated counter. Thresholds can
be configured for single VMs or for VM groups. This is different from triggers [p. 63] that always
operate on a VM group level rather than for single VMs.

For single VM thresholds, the telemetry value of each VM is checked and for each offending
VM a threshold violation is created. For example, you may have an upper bound on the used
heap and each VM that uses more than that gets its own threshold violation.

For VM group thresholds, the telemetry value of the VM group is checked and only one threshold
violation is created no matter how many VMs violate the threshold individually. Imagine a database
that serves 10 VMs in a VM group. If that database becomes very slow and you have defined a
threshold for the average JDBC execution time, all 10 VMs will report a threshold violation. In
the end, you just want one alert and not 10. In addition, the averaged group value is smoother
and fewer spurious threshold violations will occur than for single VM thresholds.

All telemetries that show frequency data are summed for VM groups. If you have 10 VMs that
perform 10 JDBC statements per second, the VM group will show 100 JDBC statements per
second. If your acceptable range is defined for the total values rather than the loads on the single
VMs, then you have to configure your threshold as a VM group threshold.

Group EDS
Violations: 5

4 4

Group EDS/DB Group EDS/RMI
Violations: 3 Violations: 2
VM 1 VM 2 VM 3 VM 4
Violations: 1 Violations: 2 Violations: 0 Violations: 2

The counter is maintained on a per-VM level for single VM thresholds as well as on a VM group
level. When a threshold violation occurs, it bubbles up through the parent hierarchy, increasing
all the associated counters by one. At each VM group in that hierarchy, you can define triggers
that react to the corresponding number of threshold violations.

Configuration

You can define thresholds for each telemetry in the recording settings of a VM group. A threshold
definition has an associated telemetry and optional lower and upper bounds. The available
units depend on the selection of the telemetry.

60

0 Please enter the details of the new threshold.

Telemetry JDBC Average Statement Execution Time Choose
Custom name*

Threshold target Single VMs ~

Lower bound s v

Upper bound ~l | 300 ms

Minimum time 10 ™ |seconds v

Inhibit duplicate time | 1 ™ | minutes ~

| No duplicates if threshold remains violated continuously

In some cases, you need multiple threshold definitions for the same telemetry, for example to
designate different severities. In that case, you have to give the thresholds different custom
names, like "High average JDBC execution time" and "Very high average JDBC execution time".
These definitions can be used as the basis for triggers with different escalation strategies.

To avoid spurious firing of threshold violations, a minimum time can be configured for which
the bounds have to be exceeded before a threshold violation is detected. After a threshold has
fired, there is an inhibition time, during which the threshold is muted and cannot fire again. This
serves to prevent frequent firing in the case of oscillating conditions.

[Threshold violation] [Threshold violation]
1 Inhibit duplicate time :
|- } > 1| i i 1
I Min. | L Min. 11 Min. |
l—>1 | | —— |——]
i i i i |
i 1 L i i
i | i i i |
/N SN NN
| | \/ NV \/ | Threshold
! n ! o I
i 1 L i i |
i | i i i |
i 1 L i i |
1 I 1l 1 1 2)
Time

If the threshold is continuously violated, perfino will not fire any more threshold violations during
that time. There is a check box to disable this constraint. If disabled, new threshold violations
will be fired at a constant rate with a period of the configured inhibition time.

Like for transactions and method sampling filters, you can save and load sets of thresholds. This
makes it possible to copy and paste threshold definitions between VM group configurations.

61

Edit Group Configuration x
TR
| yl Please modify the details of the existing group configuration.
1. Transactions 2. Method Sampling 3. Options 4. Telemetries 5. Thresholds 6. Triggers
Telemetry Lower Bound Upper Bound @
o JDBC Average Statement Execution Time 300 ms 7

Threshold violation data

While threshold violations are mainly used to generate alerts, it can be useful to inspect the
actual data to see where the threshold violations are coming from. In the VM data views, the
"Threshold violations" view shows a list of threshold violation types. Each threshold violation
type contains a cumulated group hierarchy tree that shows which VMs or VM groups are
responsible for the total count. The nodes in the back traces are the VM groups, the leaf nodes
are the single VMs or the VM groups where the thresholds are defined.

Show |[1day | upto |Now - Auto-update | € > &

MName Time

£l

~ |DBC Average Statement Execution Time
~ Demo

~ Workers
~ |DBC

E 127.0.0.1:50180 [4d972e4d]

B 127.0.0.1:50170 [5d841c34)

B 127.0.0.1:50188 [cffabdfc]
B 127.0.0.1:38810 [8a36fa0d]

E.WllIIIII

B 127.0.0.1:38824 [15131cb1]
B 127.0.0.1:38840 [13954c2a] 2

B 127.0.0.1:40784 [4ecabbag] 3

L B e e
Filter: I

Expand the tree nodes to see the cumulated origins of thresheld violations

= =

-]

62

Triggers

While policies [p. 35] and thresholds [p. 60] detect anomalous conditions and display them in
the dashboard and the VM data views, they cannot take any actions by themselves. With triggers,
you can react to policy and threshold violations and execute a list of configurable actions.

Mechanism

Triggers operate on a different level than policies and thresholds. The latter are configuration
options that are applied to single VMs or VM groups. Triggers, on the other hand are not directly
coupled to single policy or threshold violations. Rather, they react to sequences of such events
that originate from all monitored VMs in a VM group.

This mechanism is intended to give you greater flexibility for deciding what constitutes a condition
that requires a particular action. For example, you might expect up to 1 slow URL invocation
when a cache is rebuilt. However, if there are 5 slow URL invocations per hour or more, then
something is wrong. The definition of what is acceptable and what is not, strongly depends on
the type and the implementation of your application.

| Limit: 5 policy violations per hour |

1 hour

i
~

Time

Y

1 hour

>

Time

Configuration

In the recording settings, you can edit triggers for each VM group. Triggers operate on all
recursively contained VMs. Itis possible to define different triggers for a VM group and an ancestor
VM group, both sets of triggers are handled separately.

In some cases, triggers are fired too often. For that case, perfino allows you to disable a trigger
until you have time to figure out how to change the underlying configuration.

63

Edit Group Configuration x
1,9
| yl Please modify the details of the existing group configuration.

1. Transactions 2. Method Sampling 3. Options 4. Telemetries 5. Thresholds 6. Triggers

Trigger - Enabled

@
X Threshold violation trigger [CPU: 10 violations per hour] f
®

Cancel Back e Finish

Like for transaction definitions and other entities in perfino, triggers can be saved to and loaded
from trigger sets. This enables you to copy and paste trigger definitions as starting points to
multiple VM groups.

Trigger types

There are three types of triggers:

* Policy triggers

Policy triggers are fired when the policy violations of a set of transactions exceed a defined
number during a specified period of time. The filter text field takes a transaction name pattern,
either a wildcard expression or a regular expression. Also, policy triggers are configured for
particular policy violation types.

You can have multiple policy triggers, each matching different transaction names. Unlike for
transaction definitions, there is no name matching for policy triggers where only the first
matching entry is used. If you add more than one trigger for the same transaction name, you
will probably want to set different event rates, otherwise both triggers will be fired at the same
time.

64

Please enter the details of the new trigger.
Execute a list of actions when a policy is violated for a specified number of times.

Policy types: Normal Slow (v Very slow Overdue Error

Filter * * | wildeard comparison >
Fire after 10 * eventsinone hour ~

Inhibition time | 12 * lhours v

Trigger actions

Action @

The trigger condition is decoupled from the actual condition of the policy violation. Various
transactions can define different times after which a transaction is characterized as "very
slow", the policy trigger then counts these events.

Threshold triggers

Threshold triggers are fired when the rate of threshold violations for a selected telemetry
exceeds a configured value. This requires that you have configured at least one threshold [p. 60]
for the same VM group.

Create Threshold Violation Trigger x

Please enter the details of the new trigger.
Execute a list of actions when a configured threshold is violated for a specified number
of times.

Threshald [Please choose] Choose
Fire after 10 T eventsinone hour v
Inhibition time | 12 * |nours ~

Trigger actions

Action

® % |®

Like for the policy trigger, the trigger condition does not define an actual threshold. Thresholds
can be defined differently in different descendant VM groups and the threshold trigger then
counts threshold violations.

As an example, imagine you have two groups of machines, powerful machines and legacy
machines. On a powerful machine, the number of threads may not exceed 1000, on a legacy
machine that threshold is just 500. You would create VM groups named "Powerful" and "Legacy"
and define the corresponding thresholds in the recording settings of each group as well as a
default threshold in the "All VMs" group. Then, in the "All VMs" group, you would define a
threshold trigger for the thread count telemetry. That trigger would handle both VM groups
at the same time.

65

Connection trigger

The number of connected VMs is a scalar value that originates in the perfino collector and not
in the monitored VMs. The connection trigger is intended to take action in the case that too
few VMs are running. The configured minimum number is not reached immediately when the
perfino server is started, so you have the option of arming the trigger only after the minimum
number has been reached for the first time, or after a fixed amount of time has passed.

Create Connection Count Trigger x

Please enter the details of the new trigger.
Execute a list of actions when the number of connected VMs drops below a specified

threshold.

Minimum number of VMs * 10

Trigger is armed After the configured threshold has been reached
*) Immediately

Minimum time 1 ™ | minutes v

Inhibition time 12 " |hours v

Trigger actions

Action @

Trigger actions

Each trigger can have an arbitrary list of actions.

/\ Create dashboard alert

& Invoke webhook

B send email

Create inbox entry

Write log file entry

Record fine-grained CPU data in profiling mode
Record |DK Flight Recorder snapshot

Save HPROF memory snapshot

Take memory snapshot

ME S XY m«

Save thread dump

The types of actions that can be added to a trigger can be ordered into two categories:

M

Notification actions

Notifications can be created for consumption inside perfino. Apart from the alerts
mechanism [p. 68], you can write to the log file or to the inbox. Alerts are visible in the
dashboard and are saved as historical data. The inbox is maintained for each user and has

an "unread status" on a per-user basis. Externally, you can send emails or invoke webhooks
. For sending emails, the SMTP configuration in the general settings has to be valid.
Emails get a subject line that indicates which VM cause the trigger to file, in webhook actions

you can use the character sequence@RI GGER@to insert this message into headers, query
parameters or a JSON request body.

https://en.wikipedia.org/wiki/Webhook

66

https://en.wikipedia.org/wiki/Webhook
https://en.wikipedia.org/wiki/Webhook

Data collection actions

As a reaction to anomalous conditions, you can decide to record more data for a detailed
analysis. Some of these data recording options are more intrusive than the regular perfino
recording.

For example. saving an HPROF heap snapshot should not be done on a regular basis, but if
memory is low, it will help you to find a memory leak. HPROF snapshots are written directly
by the JVM and do not require a native JVMTI profiling agent to be loaded. As such, this is a
low-risk activity, although the VM is halted until the snapshot is saved. JProfiler and other Java
profilers can open HPROF snapshots.

For getting memory information with a low overhead, use the action to take a memory
snapshot. Memory snapshots are shown in the "Memory" view in the "VM data views" section.

Thread dumps are a basic low-overhead way to inspect what is currently happeningin a JVM.
A policy trigger with event type "overdue" can save a thread dump, so you can immediately
see in which method a transaction is hanging.

Recording data in profiling mode is an escalation in CPU data gathering that requires a
native JVMTI agent to be loaded. The native perfino agent operates in a restricted mode that
is optimized for minimum overhead and minimum risk. More information on this topic is
available in the chapter oncross-over to profiling [p. 941.

The data collection actions are also available in the "VMs view" when clicking on the "actions"
link next to a connected VM.

The list of actions is executed in order. If one action fails, perfino jumps to next action and does
not terminate the execution of the trigger actions.

Trigger actions

Action @

CPU data in profiling mode [1 minute]

67

Alerts

Alerts communicate anomalous conditions to you and other users of the perfino Ul server. By
default, perfino does not create any alerts since the conditions that are noteworthy on such a
level are highly individual.

Configuration

To create alerts, you have to add a trigger [p. 63] that fires for a specified policy or threshold
violation. In the list of actions, add a "Create dashboard alert" action.

Please enter the details of the new trigger.
Execute a list of actions when a policy is violated for a specified number of times.

Policy types: Normal Slow vl Very slow COverdue Error

Filter Order * * | wildeard comparison >
Fire after 10 " eventsinone hour ~

Inhibition time | 12 * lhours v

Trigger actions
Action @
© A Createdashboard alert

When configuring the "Create dashboard alert" action you can specify a category. This selection
determines the color of the alert bars in the dashboard:

* Error
@ Red alert bars

* Warning

Orange alert bars

* Info
Green alert bars

With the configured text message, you will be able to identify the origin of the alert in the data
views.

68

Create Create Dashboard Alert x

Please enter the details of the new action.
Add a dashboard alert. The alert will be shown in the time line of
the dashboard, and you can click on it to see details.

Category |Error ~

Text* Order handling SLA violation

Data

Alerts are displayed in the dashboard. They are drawn as alert bars over the transaction timeline.
In this way, you can quickly correlate an alert with an increase in the general activity of your
application.

If there is more than one alert in the same time slot, just one alert bar is shown with a height
proportional to the number of contained alerts. If those alerts are from different categories, the
associated colors are shown stacked on top of each other. The tool tip shows the number of
alerts in each category.

@ Dashboard VMs % Call Graph g VM Data Views @) Inbox

Period: |Last hour ~ | Time line: |All transactions ~ | VM group: |All VMs * Alert count: 9 |

6k 1

13:10 13:20 13:30 13:40 13:50 14:00 1410

[configure]

Transaction Name Average Time - Count

(@ demosviews 6,118 ms 1,162

Clicking on the alert bar brings up the alert detail dialog where you can see exact times,
categories and the text messages that were configured in the trigger action. To view all alerts in
the time range that is currently displayed by the transaction time line, click on the "show all
alerts" link in the top-right corner.

69

The "Last VM" column in the detail dialog shows the VM that was responsible for triggering the
alert. Note that triggers always react to policy and threshold violations of entire VM groups, so

Alert Details
A Below you see all alerts in the entire selected dashbeard period

Severity
Warning
Warning

® Error
Warning
Warning

® Error
Warning
Warning

® Error

Time

3/11/20 2:03:00 PM CET
3/11/20 1:58:00 PM CET
3/11/20 1:57:00 PM CET
3/11/20 1:54:00 PM CET
3/11/20 1:48:00 PM CET
3/11/20 1:46:00 PM CET
3/11/20 1:41:00 PM CET
3/11/20 1:34:00 PM CET
3/11/20 1:33:00 PM CET

Description

JDBC performance deterioration
Multiple very slow transactions v
Demo alert caused by a threshol
JDBC performance deterioration
Multiple very slow transactions v
Demo alert caused by a threshol
JDBC performance deterioration
Multiple very slow transactions v

Demo alert caused by a threshol

Filter: |All =

Last VM
Demo/Workers/|DBC/127.0.0.1:¢
Demo/Workers/RMI handler
Demo/Workers/RMI handler
Demo/Workers/|DBC/127.0.0.1:
Demo/Workers/RMI handler
Demo/Workers/RMI handler
Demo/Workers/|DBC/127.0.0.1:4
Demo/Workers/RMI handler
Demo/Waorkers/RMI handler

m

multiple VMs may contribute to the condition that creates a single alert.

The dashboard only shows alerts from the selected period and from VMs that are recursively
contained in the selected VM group. By changing the period or the VM group selection, you can

limit the displayed alerts to your focus of interest.

To analyze alerts in a historical context, go to the alerts view in the "VM data views". Here you
can see alerts from previous days, weeks or months. If the "Auto-update" check box is selected,
alerts are displayed as soon as they are generated by perfino. Also, you can inspect alerts from

a single VM only, which is not possible in the dashboard.

Severity
Warning
Warning

® Error
Warning
Warning
@ Error
Warning
Warning
® Error
Warning
Warning
@ Error

Filter: Al

Time

3/11/20 2:03:00 PM CET
3/11/20 1:58:00 PM CET
3/11/20 1:57:00 PM CET
3/11/20 1:54:00 PM CET
3/11/20 1:48:00 PM CET
3/11/20 1:46:00 PM CET
3/11/20 1:41:00 PM CET
3/11/20 1:34:00 PM CET
3/11/20 1:33:00 PM CET
3/11/20 1:11:00 PM CET
3/11/20 1:04:00 PM CET
3/11/20 1:04:00 PM CET

Show ([1day ~ | upto |Now

Description

JDBC performance deterioration

Multiple very slow transactions were detected

Demo alert caused by a thresheld violation of the de
JDBC performance deterioration

Multiple very slow transactions were detected
Demo alert caused by a threshold violation of the de
JDBC performance deterioration

Multiple very slow transactions were detected

Demo alert caused by a threshold violation of the de
JDBC performance deterioration

Multiple very slow transactions were detected

Demo alert caused by a threshold violation of the de

F N RS SR SRR N T DS TR P S T

70

- Auto-update | € > &

Last VM

Demo/Waorkers/|DBC/127.0.0.1:54410 [f9e666a7]
Demo/Workers/RMI handler

Demo/Workers/RMI handler
Demo/Workers/|DBC/127.0.0.1:50776 [64ce58ef]
Demo/Workers/RMI handler

Demo/Workers/RMI handler
Demo/Workers/|DBC/127.0.0.1:46074 [30085d00]
Demo/Workers/RMI handler

Demo/Workers/RMI handler
Demo/Workers/|DBC/127.0.0.1:50180 [4d972e4d]
Demo/Workers/RMI handler

Demo/Workers/RMI handler

e e P elem e TR AT e L

End User Experience Monitoring

For web requests, the server transaction time is shorter than the page load time in the browser.
Secondary requests that are triggered by the page can lead to an unacceptable end user
experience even though your server monitoring indicates that everything is fine.

perfino includes a servlet filter that injects a Javascript snippet into HTML pages and reports the
page load time back to the server. In addition, a transaction ID is sent back so that perfino can
correlate execution times of web transactions and the associated page load times. The snippet
is very small and does not require any external libraries. The overhead is also extremely small,
since the snippet only runs after the page has loaded and the Web Performance APl is used to
get the timing directly from the browser.

1 1
i i
1 1
! | .

Application i HTML E Filter I

server : ! >
i Request Time
i end

|
! A4 Y
1
. 1

perfino i Javascript Report page

agent ! injection load time
i
1
i
1
i
1
1
|
1

Browser i :
Request Page load Time
start completed

There are no cross origin request problems with this scheme, because the browser sends the
data back to the application server where the page was loaded from. A servlet filter provided by
perfino reads the timing data and reports it to the perfino monitoring agent. From there it is
transmitted to the perfino collector.

Typically, you do not need page load times from all HTTP requests that create HTML pages, so
you just sample a particular percentage. This percentage value can be configured in the policies
configuration of web transactions. To disable this feature, set the percentage value to 0%.

71

Create Web Request x

Please enter the details of the new business transaction.
Maonitor web requests that come from outside the VM

1. Filter 2. Naming 3. Policies

Define policies

Slow events 500 * 9 slower than average
Very slow events 1000 * | o slower than average v
Overdue events 500000 * | ms and slower e

| Split transaction tree for policy violations

Transaction errors | Error throwables (v Runtime exceptions Checked exceptions
| Logged errors [_| Logged warnings

Ignored HTTP error codes

Sampling for policy violations Very slow and more severe v

Periodic sampling every 3 * |Hours ~

) _—
End user experience monitoring % of all web requests

Cancel Back lext Finish

In the VM data views, the "Transactions" view category holds the "End user monitoring" view. It
is structured like the hot spots view with different time ranges and navigation buttons to show
previous intervals. The table lists all web transactions for which end user monitoring data has
been received by the perfino collector.

Show |10 minutes ¥ | upto |Now - Auto-update | € > &
Web Transaction Name Transactions @ Transaction Duration Samples @ Page Load Duration - @ Overhead =

demovisn3 212 6,021 ms 42 I | 0% facions
e 204 6,030 ms 40 T | 23 facion
demolien 207 5951 ms 42 T | 2<% facions
D 209 6,098 ms 4 EEE | 20 % cion]
demotvien? 169 5,867 ms 3 7282ms 24'% [actions]

Filter: 1T

From the ratio of the page load duration and the transaction execution time, an overhead column
is calculated. The "Samples" column shows you how many measurements were taken, while the
"Transactions" column contains the total number of transactions. Their ratio should correspond
to the sampling percentage above. It can be slightly lower due to incomplete page loads and

72

browsers that do not support the Web Performance API. To get better statistics, switch the time
range to a longer interval.

Using the servlet filter

The servlet filter that injects the monitoring Javascript snippet into HTML pages is contained in
the perfino API that is located in the JAR file api / per fi no_api . j ar . See the javadoc overview
for how to download this JAR file with Maven, Ivy or Gradle.

To enable end user experience monitoring, you have to add a filter definition to your web. xm
file:

<filter>
<filter-name>euenx/filter-nane>
<filter-class>comperfino.filter.EndUserFilter</filter-class>
</filter>

In addition, you need at least one filter mapping that passes your HTML pages through this filter:

<filter-mppi ng>
<filter-name>euenx/filter-nanme>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

Only HTML files with a head tag are processed, other files are left unmodified. HTML pages that
are not generated as part of a business transaction are not injected.

If you have filters that compress your pages, you have to make sure to insert the EndUser Fi | t er
after any such filters, so that it can detect and modify the HTML content.

The Javascript snippet is loaded from and reports back to URLs below [context path]/
__perfino.Youhave to make sure that URLs matching/ __perfi no/ ** are passed to the filter.
In the above example configuration that would be the case. If the filter mapping only handles
selected URLs, the following additional filter mapping has to be added as the first mapping:

<filter-nmappi ng>
<filter-name>euenx/filter-nanme>
<url-pattern>/__perfino/*</url-pattern>
</filter-nmappi ng>

Cached pages

If you use a filter to cache certain HTML pages, you might want to disable end user experience
monitoring for those pages by adjusting the URL pattern for the EndUser Fi | t er. If you really
want to monitor cached pages, make sure that the sampling percentage for end user experience
monitoring is set to 100%, otherwise not all cached pages will include the Javascript snippet.

Since the load time of the page will not be correlated to the transaction time on the server in
that case, the average overhead may become negative. In that case, the perfino Ul shows
[Cached] instead of the negative percentage number. In the time lines for the overheads of a
single transaction, negative overhead percentages due to caching are set to zero.

For cached pages, a dynamic change of the transaction naming configuration will not propagate
to the browser. perfino uses a hashing technique to detect pages that were generated with a
different configuration and ignores the reported load times.

73

Memory

Memory analysis in perfino is always on a per-VM level. Two kinds of memory snapshots can be
taken and analyzed: Low-overhead memory snapshots and HPROF snapshots.

Memory snapshots

Low overhead memory monitoring is only possible at a "shallow" level. The JVM knows about
loaded classes and instance counts and exposes this information. There is no kind of reference
information available, which is important for solving memory leaks. Nevertheless, classes and
instance counts give you a good initial overview of the memory consumption inside a JVM. For
historical comparisons [p. 81], plotting the instance count of a particular class against time often
shows important trends.

To get a basis for historical comparisons, memory snapshots are recorded once per day. This
default can be changed on the "Recording" step of the VM group configuration. You can change
the period for memory snapshot recording or disable it altogether.

Edit Group Configuration x
1y
| yl Please modify the details of the existing group configuration.

1. Transactions 2. Method Sampling 3. Options 4. Telemetries 5. Thresholds 6. Triggers

Retransformation type Retransform classes on all configuration changes v
Record periodic heap snapshots every ' hours

Recorded probes:

When you open the "Memory" view in the "VM data views", you are required to select a single
VM or a VM pool with the VM selector in the top-left corner. After you make this selection, the
navigation controls in the top right corner are enabled and you can move to the most recent

snapshot with the € Previous button.

[no snapshot selected] £ Q, Take New Snapshot

® Navigate to a previous snapshot or take a new snapshot

If you select a VM pool, you must Q select a specific snapshot. In this way, you also narrow your
focus to a particular VM from the VM pool and the VM selection will be set to that VM for all VM

74

data views. To move back to the entire pool, simply click on the "Move one level up" link below
the VM selector.

Demao/WorkersjDBC/127.0. | Q

* Transactions

} Probe Hot Spots

* Telemetries

¥ Custom Telemetries
Method Sampling
Threshald Viclations

Alerts

MBean Browser
Snapshot Files

Thelelrecord button takes a new snapshot and displays itimmediately. Since periodic snapshots
are taken quite rarely, this strategy may be necessary if you want to analyze a current situation.

If you have selected a VM pool, perfino asks you for which VM the snapshot should be taken.

Just as when selecting an existing snapshot for a VM pool, the VM selection is then changed to
that particular VM.

Select a VM
@ The following pool VMs are connected. Please choose aone WM for the
memaory snapshot.

127.0.0.1:54390 [ffcb08eg]
127.0.0.1:54410 [f9e666a7]
127.0.0.1:54412 [4fff940f)

Cancel

A memory snapshot is a list of loaded classes together with their instance counts and shallow
sizes. "Shallow" size means that only the direct size of the object is counted. This includes pointer
sizes for referenced objects, but not the referenced objects themselves. Any other size calculations

like deep size or retained size would require information about references which are not available
with this low-overhead technique.

75

v
o
(43

Aggregation: Classes ~ | Snapshot at: 20-03-11 00:00:00 [6] Take New Snapshot | ¥ Compare

Class Name Instance Count - Shallow Size
char{] 850 kB factions] '
java.lang.String 256 kB [actions]
java.util.HashMap3$hode 121kB [actions]
java.lang.Object]] 152 kB [actions]
291kB [actions]

javalangClass

Jjava.lang.Object 31,606 bytes [actions]

Java.lang.ref.SoftReference 54,240 bytes [actions]

com.perfine.agent.e.b.a 48,000 bytes [actions]

int[] 74,808 bytes [actions]

java.util.HashMap 56,544 bytes [actions]

java.util.HashMap$Node[] 98,240 bytes [actions]

com.perfino.agent.n.c 63,424 bytes [actions]

Filter: an

The Q snapshot selector shows you all memory snapshots that are stored in perfino for the
current VM selection. This is also the place to delete snapshots.

Select Snapshot x
Select a snapshot

Timerange: 4« < March 2020 > »

Hame Count

00:00:00
» 2003-10 1
» 20.03-09 1
» 20.03-08 1
* 20-03-07 1
» 20-03-06 1
» 20-03-04 1
» 20-03-03 1
» 20-03-02 1
» 20-03-01 1

You can also take memory snapshots with the corresponding trigger action [p. 63] or by clicking
on the "actions" link next to a VM in the VMs view and selecting "Take memory snapshot".

76

Connected [VMs ~ | | Last hour ~ [IT) Options ~ EH Configure Columns

lame - Status Used Heap cPU
3 Al VMs [show] 11 [VMs
~ [Demo [11 JVA
3 VM=
72 [e17085... [show] [actions] since 13 minutes

& HPROF memory snapshot

& Save thread dump

WM Record fine-grained CPU data in profiling mode
¥ Record JDK Flight Recorder snapshot

F¥ Run GC

o Detach VM for |Profiler

HPROF snapshots
Advanced memory analysis that can give answers to questions like

* What is the cause for the memory leak in my application?
+ My application needs a lot of memory, how can | reduce memory consumption?
* Where does this class loader leak come from?

require a full heap dump.

The JVM can save memory snapshots directly in a format called HPROF without the help of native
JVMTI profiling agents. Saving HPROF snapshots is a low-risk operation, but during the time that
such a snapshot is saved, the JVM is slowed down or temporarily halted.

You can save HPROF snapshots with triggers [p. 63] or manually in the VMs view, by clicking on
the "actions" link next to a VM and selecting "Save HPROF memory snapshot".

77

[CannectedjVMs ¥ | ‘:Last hour ": [[IT) Options ~ J [ER Configure Columns J

Mame - Status Used Heap CPU
~ [AllVMS [showt 11 VM TV 208 MB T 093 %
~ [Demo [show] 11 JvMs VT 208 MB —~Wh 093 %
~ BB Web [snow 3JVMs M 7% MBI 1,48 %
Bl 127.00.1:54372 [e17085... show][actions] | @ since13minutes| W 2% mMB M 3148 %
Bl 127.0.0.1:54380 [351307... (show] [P Save HPROF memory snapshog 7% MB M~ 0.6% %
Bl 127.0.0.1:54204 (516084, show 21 13ke memory snapshot B3¥ MB — M 078 %
"E’ Save thread dump - .
» [workers [show] 21 MB i A 0.65: %

WM Record fine-grained CPU data in profiling mode
¥ Record |DK Flight Recorder snapshot

T4 RunGC

o Detach VM for |Profiler

The snapshot will be delivered to your inbox when it is ready. This can take a few seconds. If the
snapshot is large and the network connection between the perfino collector and the monitored
VM has low bandwidth, it can also take several minutes. From the inbox, you can download the
snapshot and load it with JProfiler or other Java profilers.

Note that if a sampling operation started with the "Record fine-grained CPU data in profiling
mode" is currently in progress, the heap dump will only be taken after that operation has
completed.

Confirm HPROF Snapshot

@ The HPROF snapshot will be delivered to your inbox. Note that creating an HPROF snapshot halts the VM for a few seconds.

Snapshots are stored indefinitely until you delete them from the "Snapshots" view. The inbox
item just notifies you about a new snapshot, deleting the inbox item will not delete the snapshot

78

itself. In the "Snapshots" view you can select the VM group or VM to show only snapshots that
have been taken for the selected VMs.

Heap telemetry

Information about free heap and used heap is always available with a fine time resolution. As
such, they are an ideal basis for trigger conditions that save HPROF snapshots in case of low
memory.

Telemetry: |Heap bl Show |10 minutes ~ Q up to | Now A (> &
150 MB
125 MB
100 MB
75MB
50 MB

25MB I I | I I |

0OMB

14:00 140 14:.02 14:03 14:04 14:05 14:06 14:07 14:08 14:09

Free [l Used

To do that, define a threshold for the "Free heap" telemetry with a specified lower bound in the
recording settings. In the trigger settings, add a threshold trigger for that threshold and add a
"Save HPROF memory snapshot" action to the trigger.

Create Threshold Violation Trigger x

Please enter the details of the new trigger.
Execute a list of actions when a configured threshold is violated for a specified number

of times.

Threshold Used Heap Choose
Fire after 1 * eventsinone hour >
Inhibition time | 12 * lhours v

Trigger actions

Action @

© h Save HPROF memory snapshat

Use drag and drop to reorder actions

perfino only takes a memory snapshot for the last VM where a threshold violation was detected,
not for all such VMs.

80

Historical Comparisons

perfino stores data for long period of times, in some highly aggregated forms even indefinitely.
Apart from telemetries where the main content of the view already is a historical comparison
by itself, the VM data views show data from a certain time interval and let you move back and
forth to adjacent intervals or select arbitrary intervals in the past.

In addition to looking at this historical data to analyze it by itself, many VM data views offer
facilities to make historical comparisons. There are two kinds of comparisons: Comparing all the
content from two selected points in time and comparing one scalar value for many points in
time.

Content comparisons

Content comparisons are available in the views that show transactions as well as the probe hot
spots views. To start a comparison, click on the "Compare" link in the top right corner. This
immediately shows you a comparison between the following intervals:

+ Second interval
The second interval is the interval you were looking at before clicking on the "Compare" link.
You can adjust the second interval with the same navigation controls as before.

+ First interval

The first interval is set to the interval just preceding the second interval. New navigation
buttons are shown that let you adjust the first interval as required. With the date and time
chooser you can jump back to arbitrary points in time.

Policies: |Split ~ Show | 1 hour ~ | upto 20-03-11 14:00 () &
Compare with £ | 20-03-11 13:00
Hot Spot Total Time _ Tot. Time DifF nvocations nv. Diff Avg. Tim
» ¥ Inventory checks via RM 457 m 9185 6529 -194 4,207 ms
» $# Remote demo transaction 288 m 505 5 19615 48 881 ms
» ¥ Exchange rate checks via HTTP 223 m -486 5 26144 742 513 ms
142 m -320s 130567 4,705 65,377 ps
on 119m -180s 569 78 1,280 ms
46845 -285s 968 39 4839 ms
e 817 +6,353 ms 65 +33 787 ms
@ processOrder 80! -2,779 ms 1179 +4f 683 ms
@ do 68 12,480 ms 55 24 585 ms
@ esbrsendy 432 -11,317 ms 1105 391 ms

Transaction data is aggregated, so as you move the first interval back in time, you will hit the
limit of stored data. At that point you have to switch to a larger resolution for which data is

retained longer. The available display intervals with their retention times are:

81

Display interval | Retention single VMs | Retention VM groups | Retention pooled VMs
1 minute 27 hours 27 hours 12 hours

10 minutes 27 hours 27 hours 12 hours

1 hour 30 days 10 days 10 days

1 day unlimited 120 days 60 days

The retention times for VM groups are lower in order to reduce storage requirements. Analyzing
single pooled VMs is only useful for fixing a problem and not suitable for long-term analysis, so
the retention times for for pooled VM data are even lower.

In a comparison view, all measurements that are shown in the regular view get an additional
column that shows the difference between the second and the first interval. In addition, the
measurement columns are shown with a difference bar in the background:

+ If the value has increased, the total length of the bar corresponds to the value in the second
interval, with the increase shown in green.

+ If the value has decreased, the total length of the bar corresponds to the value in the first
interval, with the decrease shown in red.

+ The unchanged fraction is shown in gray.

Timelines

If you click on the "timelines" link next to an element in any of the transaction views, you can
choose which column should be plotted over time.

Policies: | Split Sho hou v upto 20-03-11 14:00 £ > & | ¥ Compare
Hot Sp Ti i - Avg. Tim:
» §i# Inventory checks via RMI [metho
» $i Remote demo transaction
v $# Exchange 2614

@ exchan

289 ms

2684 < 963 4,839 ms
fi7s 165 787m
BO0S 1,179 683 m
pes 5 595 ms
pazs 1,105 391 m
BS6] W5 m
B 1,186 296 m

The timeline will replace the default transaction telemetry in the split panel below the view.
Clicking on the close button will restore the default state. Unlike the default transaction timeline
that shows all transactions split into policy violation lines, these timelines are calculated from
the transaction trees, and each point in such a timeline corresponds to one specific transaction
interval. Instead of a highlighted time range, the currently selected transaction interval is shown
as a special marker on the corresponding data point.

82

Policies: |Split ~ Show |1 hour ~ | upto 20-03-11 1400 (> & | ¥ Compare

Hot Spot Total Time - nvocations Aug.Time
» £ Inventory checks via RMI [method samples] fome lines] 457m 6,529 4,207 ms
4 -!:} Remote demo transaction [met 288 m 19,615 281 m
» $i¥ Exchange rate checks via HTTP 223m 26,144 513 ms
{® exchangeRate [method samples] [time lines 142m 130,567 65,377 ps
Filter m
Time line of Inventery checks via RMI Show |1 day e Q Q. up to |Now e £ [close]
8000/ m
0/im —— 9 - o+
15:00 8:00 21:00 1. Mar 03:00 06:00 09:00 12:00
ormal Slow VerySlow Il Error

Time line data is not available for the one minute resolution, so the time line links are not shown
for that display interval. For other display intervals, the data points in the time line initially match
the display interval in the data view, so that the numbers are comparable. The timeline has
navigation buttons itself which take you to different intervals of the entire timeline, just like for
telemetry views.

The following display intervals in the data view and the time line are compatible with respect to
the measured intervals:

Data view Time line

10 minutes | 3/6/12 hours

1 hour 1/3/6 days

1 day 12/30/60/180 days

To get the chronological context for the data displayed above, look for the up-arrow icon in the
timeline. You can navigate to different points in time by clicking on them.

Time line of Inventory checks via RMI Show |1 day = @ Q |upto |Mow 5 < [close]

(1]

ormal Slow verySlow Il Error

If you change the display interval of the time line and then click on a data point in the time line,
the resolution of the data view will be adjusted to be compatible with the time line. Then, the
current time can be marked.

83

If you select a new timeline in the data view, the old timeline will be replaced. Any change in the
parameters of the data view will automatically close the timeline.

84

MBean Browser

Introduction

Many application servers and frameworks such as Apache Camel "’ use JMX to expose a number
of MBeans for configuration and monitoring purposes. The JVM itself also publishes a number
of platform MxBeans “ that present interesting information around the low-level operations in
the JVM.

perfino includes an MBean browser that shows all registered MBeans in a selected VM. The
remote management level of JMX for accessing MBean servers is not required, because the
perfino agent is already running in-process and has access to all registered MBean servers.

perfino supports the type system of Open MBeans. Besides defining a number of simple types,
Open MBeans can define complex data types that do not involve custom classes. Also, arrays
and tables are available as data structures. With MXBeans, JMX offers an easy way to create
Open MBeans automatically from Java classes. For example, the MBeans provided by the VM
are MXBeans.

The "MBean browser" view in the "VM Data Views" shows all registered MBeans in one selected
JVM. If you have selected a VM group, you have to switch to a single VM first. If you have selected

a VM pool, the context area will show an Q image button that will present a list of pool VMs.

While MBeans have no hierarchy, perfino organizes them into a tree by taking the object domain
name up to the first colon as the first tree level and using all properties as recursively nested
levels. The property value is shown first with the property key in brackets at the end. The t ype
property is prioritized to appear right below the top-level node.

Attributes
At the top level of the tree table showing the MBean content, you see the MBean attributes.

@ javalang:type=Memory [sun.management.Memorylmpl]
[E Attributes % Operations
Name Value

~ HeapMemorylUsags
committed

* NonHeapMemoryUsage

ObjectName

ObjectPendingFinalizationCount 0

_n
T

m
T

The following data structures are shown as nested rows:

* Arrays

Elements of primitive arrays and object arrays are shown in nested rows with the index as
the key name.

M https://camel.apache.org/camel-jmx.html
) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

85

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

+ Composite data

All items in a composite data type are shown as nested rows. Each item can be an arbitrary
type, so nesting can continue to an arbitrary depth.

* Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of j ava. uti | .
Map are mapped to a tabular data type with one key column and one value column. If the type
of the key is a simple type, the map is shown "inline", and each key-value pair is shown as a
nested row. If the key has a complex type, a level of "map entry" elements with nested key
and value entries is inserted. This is also the case for the general tabular type with composite
keys and multiple values.

Optionally, MBean attributes can be editable in which case an edit link will be displayed next to
their value. MBean attributes can only be edited by a user with at least the "profiler" access level.
Composite and tabular types cannot be edited in the MBean browser, but arrays or simple types
are editable.

If a value is nullable, such as an array, the editor has a check box to choose the null state.

TR
|y| Edit the value of the selected attribute

EditableBigDecimalArray v nul @

Array elements are separated by semicolons. One trailing semicolon can be ignored, so 1 and
1; are equivalent. A missing value before a semicolon will be treated as a null value for object
arrays. For string arrays, you can create empty elements with double quotes ("") and elements
that contain semicolons by quoting the entire element. Double quotes in string elements must
be doubled. For example, entering a string array value of

"Test";"";;"enbedded "" quote";"A B";;
creates the string array

new String[] {"Test", "", null, "enbedded \" quote", "A;B", null}

perfino can create telemetries from numeric MBean attribute values. When you define an
MBean telemetry line [p. 53] in the recording settings, the Select button will bring up an MBean
attribute browser with a VM selector on top. After you select a VM, you can choose an MBean
attribute. Contrary to the MBean browser, the attribute rows are selectable in this case.

A telemetry can also track nested values in composite data or tabular data with simple keys and
single values. When you chose the nested row, a value path is built where path components are
separated by forward slashes.

86

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface that are
not setters or getters. To be able to invoke MBean operations, a user has to have at least the
"profiler" access level.

* 3 com.ejt.demo @ com.sun.managementitype=HotspotDiagnostic [sun.management.HotspotDiagnostic]
* [3 com.jprofiler.api.agentmbean

* [com.sunmanagement [E Attributes & Operations

@ DiagnosticCommand [type] Operation -
@ HotSpotDiagnostic [typel

» O3 javalang dumpHeapijava.lang.String po, boolean p1) = void

* [javanio getVMOption(java.lang.String p0) —» [Composite]

» [java.util.logging

setVMOption(java.lang.String po, java.lang.String p1) —» void

Filter: [T

The return value of an operation may have a composite, tabular or array type, so a new window
with a content similar to the MBean attribute tree table is shown. For a simple return type, there
is only one row named "Return value". For other types, the "Return value" is the root element
into which the result is added.

The operation has completed successfully

MName Value

~ Return value [com.sun.managementVMOption]
name HeapDumpOnOutOfMemoryError
arigin DEFAULT
value false
writeable true

MBean operations can have one or more arguments. When you enter them, the same rules and
restrictions apply as when editing an MBean attribute.

87

"y

Q Enter the values of the arguments for the operation

setVMOption(java.lang.5tring p0, java.lang.String p1) =¥ void

javalang.string p0 | HeapDumpOnCutOfMemoryError _ null

java.lang.String p1 [tr’ue]) null

88

REST Export API

Introduction

In the perfino Ul, the data views have an export button that allows you to extract the displayed
data in a machine-readable format for further processing.

Policies: |Split ¥ Remote origins: |Merge ~
Show |10 minutes ~ | upto |Now ot Auto-update £ ¥ Compare
Transaction Total Time - nvocations Aug.Time
» ¢" RmiHandler.remoteOperation 4931s 3,507 1,406 ms
(@ exchangeRate [met 1,470s 22,834 64,396 s
> @ demofview3 [methed samples] [time lines 1,282s 213 6,021 ms

= .

a - e e

Depending on the type of data, the supported formats are JSON, XML and CSV.

Export Data x

Export Data
* You can export the data of the current view

H to selectad machine-readable formats.

Export format:

® [SON
XML
csv

Download Close

To automate external data analysis, as well as to hook up perfino to other monitoring systems,
this manual export is impractical. In that case, you can use the REST export API instead.

By default, the REST API service is not made available. You can enable it by setting the "restApi"
property [p. 103]in per fi no. properti es to a non-zero value. The protocol on the configured
port is the same as that of the web server, i.e. either HTTPS or HTTP.

Once enabled you can make HTTP(S) calls to the configured port to retrieve recorded data. Just
like in the web Ul, you can request data for single VMs, or ask for cumulated data for a particular
VM group.

Using the API

Access to the APl is protected with basic HTTP authentication. This means that the password will
only be encrypted when using HTTPS as the protocol. Since the APl does not make any
modifications, any configured user regardless of the access mode can export data with the REST
API.

The returned format depends on the "Accept" header of the HTTP request. The following mime
types are supported:

+ text/plain

The output will be plain text. If multiple columns are available, CSV data is written. For
hierarchical data, only the top-level will be exported. The separator is a comma by default,

89

but you can change this with the csvSepar at or URL query parameter. The wi nLi neBr eak
URL query parameter changes the default line feed from LF to CR+LF.

+ application/json
The output will be in JSON format. Use appl i cati on/j son; char set =UTF- 8 to ensure that
the output is in UTF-8 encoding regardless of other accept headers.

+ application/xml
The output will be in XML format.

A call to the REST API consists of one or more URL segments, followed by a list of query
parameters. For example, if the configured API port is 8500, a call to

https://I| ocal host: 8500/ gr oups
lists all groups that are configured in perfino. The URL
https://1 ocal host: 8500/ transactions/cal | Tree?gr oup=Deno%2FWb&i nt er val =10mni n

retrieves the call tree data for the VM group "Demo/Web" for the last 10 minutes. Note the
URL-encoded forward slash in the group name.

All start and end times can be specified in milliseconds between the current time and midnight,
January 1, 1970 UTC or in one of the following formats:

Format Example Description

yyyy- Mt dd' T' HH: nm ss. | 2016-03-02T722:40:00.000 Date and time in the local time of

SSS the server. All shortened versions
2016-03-02722:40:00 will be equal to providing zeros.

yyyy- Mt dd' T' HH: nm ss
2016-03-02

yyyy- MV dd

yyyy- M dd' T' HH mm ss. | 2016-03-02T22:40:00.000Z | Date and time in UTC. All

Sss 7 shortened versions will be equal
2016-03-02T22:40:00Z to providing Zeros.

yyyy- Mt dd' T' HH: nm

ss' Z' 2016-03-02Z

yyyy- MM dd' Z'

APl documentation
The following URLs are available:
+ /groups
Returns a list of all VM groups. The group hierarchy separator is a forward slash. All nodes in

the tree table of the recording options are returned in a breadth-first manner. In XML and
JSON, the "pool" attribute shows if the group is a VM pool or not.

90

* /vms

Returns a list of VMs. The names include the hierarchical group path as returned by the
/ gr oups URL. Individual pool VMs are not returned.

Query Parameter Description

group A specific group the VMs should be listed from. If unspecified, all
VMs are returned.

connected If set to t r ue, only currently connected VMs are returned.

+ /telemetries
Returns a list of all available telemetry types, to be used in the URL below.

+ /telemetries/{telemetryType}

Returns the specified telemetry data. The values of {t el enet r yType} must be one of the
values that is returned by the / t el enet ri es URL above.

Query Parameter Description
interval A telemetry interval. Possible values are 10mi n, 3h, 3d, 30d
startTime You can specify a start or an end time in addition to the interval. For
_ time formats, please see above. If left out, the current time will be

endTime used as the end time.

vm You can specify a vm name or a group name. If left out, all VMs will
be used.

group

pretty If settot rue, JSON and XML output will be pretty printed

csvSeparator If text/plain is requested, you can specify a custom separator char

winLineBreak If set to t r ue and if text/plain is requested, CR+LF line breaks will
be written instead of LF line breaks.

+ /transactions/{dataType}

Returns the specified transaction data. Possible values of {dataType} are call Tree,
hot Spot s, over due and endUser .

Query Parameter Description
interval A transaction interval. Possible values are 1mi n, 10mi n, 1h, 1d
startTime You can specify a start or an end time in addition to the interval. For
_ time formats, please see above. If left out, the current time will be
endTime used as the end time.

91

Query Parameter Description

vm You can specify a vm name or a group name. If left out, all VMs will
be used.

group

mergePolicies If set to t r ue, policies will be merged for the data types cal | Tr ee

and hot Spot s.

removeOrigins If set to f al se, origins will be shown for data type cal | Tr ee.
pretty If settot rue, JSON and XML output will be pretty printed
csvSeparator If text/plain is requested, you can specify a custom separator char
winLineBreak If set to t r ue and if text/plain is requested, CR+LF line breaks will

be written instead of LF line breaks.

+ /probeHotSpots
Returns a list of all available probe types to be used in the URL below.

+ /probeHotSpots/{probeType}

Returns the specified probe hotspot data. The values of { pr obeType} must be one of the
values that is returned by the / pr obeHot Spot s URL above.

Query Parameter Description
interval A transaction interval. Possible values are 1ni n, 10mi n, 1h, 1d
startTime You can specify a start or an end time in addition to the interval. For
_ time formats, please see above. If left out, the current time will be
endTime used as the end time.
vm You can specify a vm name or a group name. If left out, all VMs will
be used.
group
mergePolicies If set to t r ue, policies will be merged.
pretty If settot rue, JSON and XML output will be pretty printed
csvSeparator If text/plain is requested, you can specify a custom separator char
winLineBreak If set to t r ue and if text/plain is requested, CR+LF line breaks will
be written instead of LF line breaks.

« /alerts
Returns the specified list of alerts.

92

Query Parameter Description
startTime You can specify a start and an end time. If one is left out one day
_ will be exported. If both are left out the current time will be used as
endTime the end time.
group You can specify a group name. If left out, all VMs will be used.
pretty If set to t r ue, JSON and XML output will be pretty printed
csvSeparator If text/plain is requested, you can specify a custom separator char

winLineBreak

If set to t rue and if text/plain is requested, CR+LF line breaks will
be written instead of LF line breaks.

/violations

Returns the specified threshold violation data.

Query Parameter Description
startTime You can specify a start and an end time. If one is left out one day
_ will be exported. If both are left out the current time will be used as

endTime the end time.

vm You can specify a vm name or a group name. If left out, all VMs will
be used.

group

pretty If setto t r ue, JSON and XML output will be pretty printed

csvSeparator If text/plain is requested, you can specify a custom separator char

winLineBreak If settot rue and if text/plain is requested, CR+LF line breaks will
be written instead of LF line breaks.

+ /triggerBackup

Triggers a backup of the database. The backup files are written to the backup directory inside
the perfino data directory. You need to authenticate with an admin user in order to be able
to use this URL.

The return value of this call is the absolute directory path of the backup directory.

To restore such a backup, stop the perfino server, replace the contents of the "db" directory
with the contents of the "backup" directory and start the perfino server again.

If the REST APl is impractical to use, or if you have not activated it for your perfino installation,
you can also create a file named tri gger _backup in the perfino data directory. After the

backup has been completed successfully, the file will be deleted and the backup will be
performed.

93

Cross-over To Profiling

There are several reasons why you should not have a profiler running in production at all times.
For one, there is the overhead that may be unacceptably high depending on the profiling settings.
Profilers are geared towards maximizing the extraction of useful information with no explicit
guarantees as for the incurred overhead. Also, the use of the native profiling interface of the
JVM (JVMTI) is something that is an additional risk in a production environment. Depending on
whether you use non-standard garbage collectors or other JVM tuning options, there may be
stability concerns, since the JVM is not tested as extensively with JVMTI as it is without.

However, the best defense against performance problems is defence in depth. Sometimes there
are situations that require more information than what can be obtained from the low overhead
monitoring and sampling techniques that are available in perfino.

Recording CPU snapshots

For these cases, perfino offers a full sampling mode that loads a native JVMTI library that is
optimized for in-production use. The result of this operation is a JProfiler snapshot file that can
be downloaded from perfino and opened in JProfiler - similarly to the HPROF memory snapshot
files [p. 74] that are saved directly by the JVM.

This profiling mode is only available if the correct native libraries are present in the |i b/
[pl at fornj directory next to the perfino.jar file that was used in the -j avaagent VM
parameter. If you download the agent [p. 12] from the perfino Ul, native libraries for all supported
platforms are already included. If you copy the agent yourself from the perfino installation
directory, copy the agent /| i b directory along with it.

Once the JVMTI has been turned on, it cannot be turned off again. As long as the JVM is running,
it will remain in this state. Typically, the overhead of the JVMTI without any data recording is less
than 1%, though.

To take a CPU snapshot of a particular VM, go to the VMs view, click on the "actions" link next to
the VM and select "Record fine-grained CPU data in profiling mode".

Connected VMs | |Last hour [I7] options ~ B8 Configure Columns
~ 3 All VM [show] 11 Vs

~ [J Demo [show] 11 [VMs

P

_PU data in profiling m-:n:\':l

Flight Recorder snapshot

94

The duration of CPU recording can be configured. perfino monitoring is not impacted by CPU
sampling. Also, you can specify if the call tree should be split for each transaction or not. This is
a top-level split and the sampling call tree is appended to the perfino transaction tree (see below).
Whether this split is beneficial or not depends on your transaction definitions and what kind of

problem you want to find. The overhead for sampling with transaction splitting is higher than
without.

Configure recording options
@ A JProfiler snapshot is delivered to your inbox after data recording has completed.

1. Recording

Recording time | 1 * | minutes ~
During recording:

« there will be no progress information
« the profiled VM will be specially marked as being profiled

= no data will shown in perfino for the profiled vM
Split the call tree for each transaction

Warning: This action will switch on the JVMTI profiling interface in one of the VMs that

caused the trigger to fire. This carries an inherent stability risk and is only intended for
solving immediate problems.

Cancel Bac Next

To take snapshots automatically if the CPU load is too high, you can set up a threshold for the

CPU telemetry and configure a trigger that includes the "Record fine-grained CPU data in profiling
mode" trigger action.

Create Threshold Violation Trigger x

Please enter the details of the new trigger.
Execute a list of actions when a configured threshold is violated for a specified number

of times.

Threshold CPU

Choose
Fire after 10 * eventsinone hour -
Inhibition time | 12 * lhours ~
Trigger actions
Action @
° WM Record fine-grained CPU data in profiling mode [1 minute] 7
®
)
w J

Use drag and drop to reorder actions

95

Note that only the last offending VM will be profiled, not all of them.

If you use a custom library for network 1/0, you can add selected methods to the net I/0 thread
state [p. 123], so that you get useful hot spots for your analysis.

Viewing CPU snapshots in JProfiler

CPU snapshots are delivered to your perfino inbox from where you can download them. The file
extension is ".jps" which stands for "JProfiler snapshot". If you have JProfiler installed, you can
double-click on the snapshot file to open it, or choose Session->Open Snapshot from JProfiler's
main menu.

CPU snapshots taken by perfino only contain data for the call tree, hot spots and call graph views
as well as the thread history and thread monitor views. Other views are disabled when you open
a perfino CPU snapshot.

& 127.0.0.1_60972 [8aaf2970] jps - JProfiler — O X

Session View Profiling Window Help

S % t 25 @

Start Session View Show
- Export - Help
Cenzer Sewings setings Legend
X Thread selection: | @8 All thread groups ~ | Aggregation level: | () Methods =
Telemetries
Thread status: == Runnable ~ | View mode: = Tree =

3% - ms com.gjt.demo.server.DemaServerS3.run
@ — g3.3% - 285 jt.d D 5 33
9% - ms com.gjt.demo.server.DemoServerSl.run (= line:
(@ m—539% - 185 jt. D S s (= line: 221)
®_ 63.9% - 183 ms com.gjt.demo.server.DemoServer.accessS000 (= line: 123)
Heap Walk () — 53,0% - 135 mc com.ejt.demo.server.DemoServer.simulateRequest (= line: 24)
2% - ms javax.servlet.http. HttpServlet.service (= line:
BG Heor Welker () w—2.2% - 180 ms j let.hitp HttpSer ice (= line: 180)
2% - ms com.eft.mockserviet.MockServiet service
D — 53.3% - 130] k.serviet.MockServl i
. () m— 50,5% - 175 mc com.gjt.dema.server.handlers.RequestHandler.run (= line: 37)
RO e () £0.5% - 175 ms com.ejt.demo.server handlers.PerfinoRequestHandler.performWork
(D) m— 0,5% - 175 ms com.gjt.demo.server.handlers.RequestHandler.performWork: (=

Live memory

Call Tree (@) mm 27.3% - 80,620 ps com.gjt.demo.server.handlers.RequestHandler.makelpaCall (
(@™ 17.5% - 50,837 s com.ejt.demo.server.handlers.RequestHandler.executelpa
Hot Spots @™ 17.5% - 50,837 ps com.gjt.mock.jpa.MockTypedCuery.getResultList (= |i
@17.2%- 21,014 s java.lang.String.replacedll (= line: 29)
Call Graph @134%-9913 s com.ejt.mock.jdbec.MockPreparedStatement.executeC
@l 8.6% - 24,844 ps com.ejt. mock.jpa.MockEntityManager.flush (* line: 68)
Outlier Detection @ 1.7%- 4939 ps com.gjt.demo.server.handlers.RequestHandler.createQOrder (=
@‘ 18.9% - 54,908 ps com.ejt.demo.server.handlers.PerfinoRequestHandler.makeRr
Complexity Analysis @l 13.8% - 39,992 s com.ejt.demo.server.handlers.PerfinoRequestHandler.makeHt
O®173%- 50,148 s org.uncemmens.maths.random.Exponential Generater.nextValue (~ line: 218)
Call Tracer (D) ® 15.4% - 44,627 us com.eit.demo.server PerfinoDemoServerSTrun (= line: 221)
JavaScript XHR Call Tree View Filters - | @
T @ Orecordings VM 21 00:00 Il Snapshot

If transaction splitting was enabled for CPU recording, the perfino call tree is shown at the top
and the sampling data is attached as appropriate.

96

> %

Start Session
Settings

’ Telemetries

’ .
-l'l- Live memory
.
ﬁ Heap Walker

I CPU views

Call Tree

Hot Spots

Call Graph
Outlier Detection

Complexity Analysis

€ 127.0.0.1_60974 [bf0eb321]jps - JProfiler -] x

Session View Profiling Window Help

t @ 07

View Show
Expont Settings Help Legend
Profiing e
Thread selection: | S8 All thread groups ~ | Aggregation level: (@ Methods =
Thread status: B Runnable ~ | View mode: = Tree ~

o - ms com.gjt.demo.server.DemoServeri3.run
O 357% - 124 =jt.d D S 33
0% - 69,772 us 1 demo/view
@™ 20.0% - 69,772 us HTTP: d fuiew]
0% - 69,772 ps : Mested demo transaction
@ ™ 20.0% - 69,772 ps DEVOPS: Mested d i
- X fps com.gft.demo.server.DemoServerS3.run
@n11.4%- 39817 jt.dl D Si 53
@l 11.4% - 39,817 ps com.gjt.demo.server.DemoServerSTrun (% line: 221)
Or11.4%-3081T ps com.ejt.demo.server.DemoServer.accessS000 (= line: 123)
A% - 39,817 ps com.gjt.demo.server.DemaoServer.simulateRequest (= line:
@n11.4% - 39,817 jt. dl D S imulateReq (= line: 24)
0' 11.4% - 39,817 ps javax.serviet.http. HttpServiet.service (% line: 180)
Or11.4%- 39,817 ps com.gjt.mock.serviet. MockServiet.service
(@1 11.4% - 39,817 ps com.ejt.demo.server.handlers.RequestHandler.run (= line: 37)
@l 11.4% - 39,817 ps com.egjt.demo.server.handlers.PerfineRequestHandler.perform
(D" 11.4% - 39,817 ps com.ejt.demo.server.handlers.RequestHandler.performWe
B 11.4% - 39,817 ps com.ejt.demo.server.handlers.RequestHandler.makel
() ; q P
@l 5.7% - 19,938 ps com.ejt.demo.server.handlers.RequestHandler.execu
(D15.7% - 19,259 us com.ejt. mock.jpa.MockEntityManager flush (~ line:
al 5.7% - 20,042 ps DEVOPS: Inventory checks via RMI
al 2.8% - 9,913 ps DEVOPS: Exchange rate checks via HTTP
@m 17.1% - 59,874 ps HTTP: demo/view5
ol 15.7% - 54,787 us HTTP: demo/view2

il @1 7.2% - 25,008 s HTTP: demo/viewd
JavaScript XHR 1 Call Tree View Filters - | @
T @ 0recordings WM 21 00:00 I Snapshat
The back traces in the hot spots view also show the perfino transactions in this case.
€ 127.0.0.,1_60974 [bf0eb321]jps - JProfiler -] X
Session View Profiling Window Help
> % L @ o &
Start Session View Show
Center Settings e | P Anslyze
Profiiing
Thread selection: | 38 All thread groups ~ | Aggregation level: (@ Methods =
Telemetries
Thread status: | B Runnable ~ | Hot spot options: | Self times ~
.'. Live memory Hot Spot Self Time ¥ Average Time Invocations
e 1. java.net.HttpURLConnection.getResponse... I 59,994 ps (17 %) nfa n/a
& com.gt.mockservietMockServietservice I 54,803 us (15 %) n/a nfa
g f. com.ejt.demo.server.handlers.HandlerHel... M 34,926 ps (10 %) n/a nfa

ﬁ Heap Walker

I CPU views

Call Tree

Hot Spots

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR
-

@ 10.0% - 34,926 ps com.gjt.demo.server.handlers.RequestHandler.makeRmiCall (~ line: 45)
@l 10.0% - 34,926 ps com.egjt.demo.server.handlers.PerfineRequestHandler.makeRmiCall (~ line: 43)
@ " 10.0% - 34,926 pc com.gjt.demo.server.handlers.RequestHandler.performWork ([line: 26)
@ m10.0%- 34926 ps com.ejt.demo.server.handlers. PerfinoRequestHandler.performWaork (~ line: 36)
@l 10.0% - 34,926 ps com.gjt.demo.server.handlers.RequestHandler.run (- line: 37)
@ 10.0% - 34,926 ps com.gjt.mock.serviet.MockServiet service
@n10.0%- 34926 ps javax.serviet.http HttpServlet.service (line: 180)
@ B 10.0% - 34,926 ps com.gjt.demo.server.DemoServersimulateRequest (~ line: 24)
@ m10.0% - 34,926 ps com.ejt.demo.server.DemoServer.accessS000 (~ line: 123)
@l 10.0% - 34,926 ps com.gjt.demo.server.DemoServerSTrun (~ line: 221)
@l 10.0% - 34,926 ps com.ejt.demo.server.DemoServerS3.run
@ " 10.0% - 34,926 ps DEVOPS: Inventory checks via RMI
a B 10.0% - 34,926 ps DEVOPS: Nested demo transaction
al 4,3% - 14,862 ps HTTP: demo/view3
@ 2.9% - 10,020 ps HTTP: demo/viewl
@ 1.4% - 5076 us HTTP: demo/viewd

1~ Hot Spot View Filters

I Snapshot

T @ Orecordings

VM #1 00:00

The attribution of sampling data to transactions is not exact, but only an estimation based on
the analysis of subsequent sampling call stacks. For very short running transactions (< 5ms),
sampling data may be attributed to another transaction or even be placed outside any transaction.

In the thread history view, you can check when threads were created or terminated and what
kind of activity they performed over their recorded lifetime. Only green areas indicate times
when the thread was actually eligible to execute methods. Other thread statuses designate idle

time while waiting or blocking on monitors or reading or writing to network sockets.

97

W 127.0.0.1_60974 [bf0eb821]jps - JProfiler] x
Session View Profiling Window Help
= —
> Ef 1 (7]
Start Session Epm T Help
Center Settings Settings
’ . Show usages: | Both alive and dead ot Filter
@ Telemetries T T B o I B B I A I B A B A |
Threads 0:20 0:30 0:40 0:50 I
| | | | |
Live memory RMI GC Daemon [InnocucusThreadGra... | ! ! | |
Servlet request simulator 3 [main] | | | | |
Servlet request simulator 3 [main] | | ! | |
ﬁ Heap Walker Servlet request simulator 4 [main] | | | | |
Servlet request simulator 2 [main] | ‘ ' | |
I CPU views Keep-Alive-Timer [InnocucusThreadGro... | | | | |
Servlet request simulator 2 [main] | ! ' | |
— Servlet request simulator 1 [main]
Threads S | | | | |
main [main] | ' ' | |
Servlet request simulator 1 [main] | | | | |
Uizt Al Servlet request simulator 3 [main]
Thread Monitor
Thread Dumps
1 Monitors & locks
== Runnable = Waiting ™= Blocked ™ Netl/O /O p ko
@ Orecordings VM #1 00:00 7| Snapshot
9 P

Full profiling

Sometimes performance or memory problems are so tricky that you need the entire arsenal of
recording techniques that a profiler has to offer. For example, the capabilities of the heap walker
for live heap snapshots can be instrumental for solving a memory leak or the CPU and probe
profiling features may be required for understanding a performance problem. Questions involving
threading issues, monitors and locks can only be solved in JProfiler and not in perfino.

perfino helps you to cross over to full profiling with the minimum amount of intrusion into your
production environment. If a JProfiler installation can be found, perfino can load its agent into
a monitored VM and prepare it for a connection from the JProfiler GUI. Use the "Detach VM for
JProfiler" action in the VMs view to initiate this process. The VM will be detached from perfino
and has to be restarted after profiling to reconnect to perfino.

98

Connected [VMs ~ | | Last hour ~ [IT) Options ~ EH Configure Columns

lame - Status Used Heap cPU

PU data in profiling mode

Flight Recorder snapshot

To take advantage of this integration, you have to download the JProfiler archive " and extract
it in one of the following directories:

+ The directory where the per fi no. j ar file has been installed

+ The directory $HOVE/ . per fi no on Linux/Unix or %JSERPROFI LE% . per fi no on Windows,
for the user who is running the monitored VM.

The JProfiler archives from the download page contain a single top-level directory named
jprofiler[major version].The perfino agent sequentially looks for such directories in the
above locations and uses the directory with the highest version number. Any version of JProfiler
starting from 8.0.6 can be used for this integration.

If none of the standard directories above are suitable or if you already have a JProfiler installation
elsewhere, you can append the option, j profiler=[JProfiler installation directory]
to the VM parameter for monitoring [p. 12]. If the appropriate native library file can be found in
that JProfiler installation, it will be used preferentially, otherwise the perfino agent will continue
to look in the standard directories.

If no JProfiler installation can be found, specific instructions for integrating JProfiler are given.
You can download and extract JProfiler on the machine where the monitored VM is running and
execute the "Detach VM for JProfiler" action again, there is no need to restart the monitored VM.

If JProfiler was found, a confirmation dialog is shown, where you get the chance to configure the
profiling port to which the JProfiler GUI will attach. You can either enter the desired port number
yourself or let perfino find a free port for you. In the latter case, an inbox message will be sent
to you with the actual port number.

M https://www.ej-technologies.com/redir?product=jprofiler&target=download

99

https://www.ej-technologies.com/redir?product=jprofiler&target=download

Detach VM For JProfiler x

A Detach VM for attaching with |Profiler
The selected VM will be removed from perfino and the profiling agent will be loaded, so
you can attach with the JProfiler GUI.

The profiling agent will listen on a specific port that you have to specify in the JProfiler GUI.

® Automafic assi gl"nent‘ You wi gEt an inbox message Wi th the portnumber
Manually enter a port number

Warning: This action will load the native JProfiler JVMTI library in the select VM. This carries an
inherent stability risk and is only intended for solving immediate problems.

The selected VM will be removed from perfino and will not be monitored again until you restart it.

In JProfiler, create a new session of type "Attach to profiled JVM (local or remote)" and enter the
IP address or host name where the VM is running as well as the port on which the profiling agent
is listening.

@ Session Settings X
Application Settings Session name: | MNew session Id: 137 o
Session Type
Profiled JVM
‘ Attach to an already running HotSpot JVM and profile it
Code Editer
Attach Attach type: () Select from all local JVMs (8 Attach to remote JVM
Call Tree Recording .& Launch a new JVM and profile it
Launch Launch type: Application Web Start

Call Tree Filters
Profiled JVM Settings

. If you have not yet prepared a JVM for profiling, it is recommended to run an integration
Trigger Settings wizard. It will create the remote session for you.

Direct connectionte ~ 127.0.0.1 Profiling port: | 3849 Default | @)
Database Settings
[[] Use SOCKS proxy

Probe Settings [] Execute start command
[] Execute stop command

Advanced Settings O Open browser with URL

T O T 45

Connection timeout: &0 : seconds | Config Synchronization Optiens

Java File Path

MNote: the classpath is used for the bytecode viewer only.

®) Class path
() Source path (7]
General Settings Copy Settings From Cancel

perfino will stop monitoring the VM when you prepare it for profiling. To monitor it again, you
have to restart the JVM.

100

Recording JFR snapshots

An alternative mechanism to get more low-level information on a monitored VM is to record a
JDK Flight Recorder (JFR)® snapshot. The Java version of the monitored VM has to be 11+ and
the JRE has to include the modulej dk. j f r.JFR recording can have very low overhead, because
it does not activate the JVMTI. Also, it does not interfere with perfino monitoring in any way.

To record a JFR snapshot, go to the VMs view, click on the "actions" link next to the VM and select
"Record JDK Flight Recorder snapshot".

Connected |VMs ~ ~ | | Last hour ~ [T options ~ EH Configure Columns
MName - Status Used Heap CPU

+ [All JVMs [show] 11 JVMs VT 203 MB e 0,932 %

~ [Demo [show] 11 vMs TV 20% MB | b 0932 %

~ BB Web [show] 3JVMs — N 17 MB hrdor 1,453 %

127.0.0.1:54372 [e17085... [show] [actons] since 13 minutes MM 12% MB M 318 %

127.0.0.1:54380 [351307... [show] g Save HPROF memory snapshat 7% MB b 0.653F %

Take memory snapshot 33 3% MB 0'7:-.: o

127.0.0.1:54394 [616984... [shaw]
& Save thread dump

213 MB ~—~Miee 063 %

> O3 workers ishow) @M Record fine-grained CPU data in profiling mode
X Record |DK Flight Recorder snapshot]
£3 RunGC

o Detach VM for |Profiler

Besides configuring the duration of the JFR recording, you can choose a predefined setting or
upload a . j f ¢ settings file that was exported from the "Flight recording template manager" in

JMC". The two predefined settings that are guaranteed to exist are "default" and "profile". perfino
suggests to use "profile" by default, because it records more relevant information. Other settings
can be predefined by placing . j f ¢ filesinthe l i b/ j fr directory of the JVM that is monitored.
If you upload a settings file, make sure that is created for a compatible Java version.

Configure recording options
@ A |DK Flight Recorder snapshot is delivered to your inbox after data recording has

completed.

1. Recording

Recording time 1 " | minutes v

Configuration mode () Predefined profile
Config file

Profile name profile

Cancel Next

) https://en.wikipedia.org/wiki/|DK_Flight_Recorder
3 https://openjdk.java.net/projects/jmc/

101

https://en.wikipedia.org/wiki/JDK_Flight_Recorder
https://openjdk.java.net/projects/jmc/

As with the other recordings above, JFR snapshots can also be recorded automatically with
triggers and the corresponding trigger action for JFR recording.

Please enter the details of the new action.
Record a |OK Flight Recorder (JFR) snapshot for a specified amount of time in

the last VM that caused trigger to fire and add it to the snapshots view.

Snapshotname® | |FR snapshot

Send to inbox of all users with viewing rights

Recording time 1 * | minutes ~
Configuration mode Predefined profile
& Config file
JFR Settings*
Upload file

While you can use JMC " to view JFR snapshots, we recommend to use JProfiler, just like for CPU
snapshots. In addition to CPU, allocation, and monitor recordings, JProfiler shows a number of
probes that are constructed from JFR events.

& RMI handler,jfr - JProfiler - O X
Session View Profiling Window Help
e + — —
= L @ o &
Start View Show
Center Bl pm || 552 e A
Session Profiiing
. Sockets
. Telemetries ok Call Tree i\, Hot Spots B Telemetries ir Events 1/0 operations for sockets =
‘ Memory Thread selection: | 88 All thread groups ~ | Aggregation level: @ Methods =
Hot Spot Time v Average Time Events
. % localhost: 7098 I 05,396 ms (33 %) 63,970 ps 397
CPU views i 127.0.0.1:36614 . 5,759 ms (11 %) 1,439 ms 6
i 127.00.1:57224 I 7,350 ms (10 %) 1,571 ms 5
— % 127.0.0.1:57249 Il 6,007 ms (7 %) 6,007 ms 1
Threads 5 192.168.2.132:57439 Il 5,960 ms (7 %) 5,960 ms 1
= i 127.0.0.1:56596 B 5,188 ms (6 %) 1,297 ms 4
N X W 3.224ms (4 %) 3,224 ms 1
f Monitors & locks The following data has been recorded: W 3,139 ms (4 %) 3,120 ms 1
1 i W 3,046 ms (3 %) 3,046 ms 1
.' oy) B2436ms(3%) 2436 ms 1
o Probes & Allocation call stack data 11,922 ms (2%) 1,922 ms 1
2 Monitor events 11,035 ms (1%) 1,035 ms 1
Classes | 778 s (1 %) 778 ms 1
ez g Sockets | 570 ms (0 %) 285 ms 2
X -) | 537 ms (0 %) 537 ms 1
A= Exceptions | 476 ms (0 %) 476 ms]
254 ms (0 %) 84,680 ps 3
Sockets Only views related to these recordings are available,
- -] A4
T M @ 6recordings Mar 5, 2020 4:29:26 PM VM #1 00:00 Il Snapshot

“) https://openjdk.java.net/projects/jmc/

102

https://openjdk.java.net/projects/jmc/

A Configuration

A.1 Server Configuration

perfino configuration options that cannot be changed in the perfino Ul are contained in the text
file perfi no. properti es in the perfino installation directory. You can either edit that text file
in a text editor or use the conf i gur e executable in the perfino installation directory. The latter
presents an organized view of all properties, saves the file even if elevated privileges are required
and can restart the perfino server to apply your changes.

The properties themselves are documented with comments in per fi no. properti es. Here, a
couple of scenarios are discussed where it is necessary to adjust the default parameters.

Data directory

The dataDirectory property points to the directory where all variable data is located. The
following subdirectories are created by perfino:

+ db
Contains the embedded H2 database.

+ log
Contains all log files. By default, log files are rotated. The rotation settings can be changed in
the | og4j . properti es file in the perfino installation directory. Different settings can be

applied to the three different log files, "server”, "connection" and "event". All log files can be
viewed in the perfino Ul.

+ snapshots

Memory snapshots and profiling snapshots are saved in this directory. These snapshots can
be downloaded or deleted in the "Snapshots" view in perfino.

« ssl

This directory contains the file pair agent . ks /ser ver . ks for authentication and encryption
as well as the SSL certificate for the web server.

If you run two perfino servers on the same machine, they have to have different data directories.
By default the installer always suggests the same location for the data directory, so in the case
of multiple installations you have to adjust it in the installer or after the installation in the
perfino.properties file.

Web server

perfino comes with a built-in web server that listens on port 8020 by default. You can adjust that
port with the httpPort property and switch to HTTPS by setting useHttps to t r ue.

When you use HTTPS, perfino will generate a self-signed certificate ssl / sel f _si gned. ks in
the perfino data directory. Browsers will display warning messages with this certificate. If you
have a certificate that is signed by a recognized certificate authority, you can copy it in PKCS12
format to ssl /web. pkcs12. If the certificate file has a different name, you can specify the
keystoreName property.

If the certificate is protected with a password, you can specify it in the keystorePassword
property. While the password cannot be encrypted, it can at least be obfuscated with the
command line tool per f i no_obf uscat e:

103

perfino_obfuscate [password]

If you put perfino behind a reverse proxy, you have to set the reverseProxy property to t r ue.
The web server will then analyze the proxy headers to create correct URLs. If this should not
work due to a problem with the reverse proxy, set the reverseProxyHost to the host name of
the proxy.

If you have infrastructure that can check the health of a web server by making an HTTP GET
request, you can set the healthCheckPort to a non-zero value in order to create such an HTTP
portin perfino. Any HTTP request to that port will return a document with HTML mime type and
the text "Alive". For example, Amazon Web Services provides a health check service that is used
by Route 53 to determine if an IP address can be routed to or not.

The REST API service [p. 89] is enabled by setting the apiPort property to a non-zero value. You
cannot set it to the same port as the web server. The REST API port uses the same protocol
(HTTP/HTTPS) as configured for the web server.

Communication with monitored VMs
Monitored VMs create a TCP connection on the port that is configured with the vmPort property.

By default, the communication between monitored VMs and the perfino collector is unencrypted
and unauthenticated. This means that every VM can connect to the perfino server and the perfino
agent has no way of knowing if the perfino server on the other side can be trusted. This can be
acceptable in certain local area networks but it is not suitable for connecting over WANs or even
over the internet.

To enable authentication and encryption set the property vmuUseSsl to t r ue. In that case, the
file pair ssl /agent. ks and ssl /server. ks will be created. Now, the server will only allow
connections from agents who possess the agent . ks file and agents will only connect to servers
who have the ser ver. ks file. In addition the communication protocol will be encrypted.

For more information on this topic, see the chapter on monitoring JVMs [p. 12].

Remote perfino Ul

Running the perfino Ul on a different server than the collector can have two purposes. First, it
allows you to split the server load of the Ul and the collector to separate machines which is a
good idea if you have many users. Second, some network topologies require that the collector
runs in one and the perfino Ul in another network. For example, if the collector runs in an internal
network that is protected by a dual firewall, and the perfino Ul should be available to the outside,
the perfino Ul has to run on a machine in the DMZ.

The first change you have to make is to set the startRemoteServer property to t r ue. Then, the
perfino server will listen for remote perfino Uls on the port configured with the remoteServerPort

property.
The perfino Ul can be deployed as a WAR file to a servlet container like Tomcat or Jetty. The WAR

file has to be generated with the depl oy tool in the depl oy directory of your perfino installation.
It will create the file per fi no- st andal one. war in the same directory.

In the application server, define the JNDI property perfino/server with a value of "server
nanme" [: port] where "server name" is the name or IP address of the server where the perfino
collector server is running. The port is optional and defaults to 1099 unless you have configured
the remoteServerPort property differently. Then, deploy the generated WAR file into your
application server. The perfino web application will make an RMI connection to the configured
data collection server automatically.

104

A.2 Server Administration

Many server options are contained in the file per f i no. properti es intheinstallation directory
and can only be changed when the server is restarted [p. 103]. The server administration settings
that can be changed in the perfino Ul are contained in the "General Settings". These settings
include user configuration, license keys and data consolidation options.

(D Dashboard VMs =& Call Graph |&y VM Data Views .+, Inbox Recording & Triggers

Period: |Last hour ¥ | Time line: |All transactions ~ | VM group: |All VMs ~

14:20 14:30 14:40 14:50 15:00 15:10

Access control

There are three different access levels in perfino: admin, profiler and viewer. With these access
levels you can implement a safe usage policy for the perfino Ul in a larger organization.

* Admin

When you install perfino, you have to create an admin user. Only an admin user can open the
"General Settings" and make modifications to it.

* Profiler

With the "Profiler" access level, you can assign full control for a particular VM group, including
the ability to put the JVM in profiling mode.

First, you create the VM group in the recording settings, if it does not already exist. When
creating the user, set its access level to "Profiler" and add the VM group to the list of access
rights, removing the entry for "All VM groups".

This user will now be able to change the recording settings for this VM group and all VM groups
that are contained within it. In addition, heap dumps and CPU snapshots in profiling mode
can be taken for the associated VMs.

Viewing rights are not restricted in perfino.

105

Create User x

o Please enter the details of the new user.

User Name *

Type Local ~
Full Name

Ema

Password *

Confirm Password *

Must change on next login

Configuration access level

Access rights for VM groups:
Group = @
‘o S8 Demo/Web | ®

* Viewer

To give somebody access to monitoring data without the ability to change any monitoring
settings, use this access level.

LDAP authentication

Instead of managing user passwords in perfino, you can delegate authentication to an LDAP
server. After you configure a URL for the LDAP server, you can switch the type of a user from
"Local" to "LDAP" and enter the LDAP DN for the user. The LDAP server URL must start with
| dap:// orldaps://, if you select the "Start TLS" LDAP extension, an | dap:// URL must be
used.

106

Please modify the details of the existing user.

User Name * Donald Duck

Type LDAP v

LDAP user DN I cn=Donald Duck,ou=Users,dc=mycorp,dc=com |* @

Configuration access level | Profiler v

Access rights for VM groups:
Group -

S8 Demo/Web

®| @

LDAP users do not have to be manually created in perfino, they can be mapped automatically.
In the LDAP server configuration you can map the login name entered by the user in perfino to
an LDAP user DN. If no configured mapping matches, the user will see the generic error message
that the combination of user name and password is incorrect. Local user definitions will always
be given precedence to LDAP user mappings. If a new LDAP user authenticates successfully, a
new user entry will be created in perfino and you can inspect the user details on the "Users and
Roles" tab of the general settings.

Configure the LDAP server

E:-ﬁl Awalid LDAP server configuration is required for configuring LDAP users

LDAP URL* | |daps://directory:10636

Use Start TLS extension
| Authenticate for performing LDAP searches
User Name* | uid=dnuser,ou=system

Password *

Automatic LDAP user mappings

LDAP Search Base LDAP User Filter Access Level @

ﬂ ou=Users,dc=mycorp,dc=com (&(cn=@USER@)(group=admin)) | Admin 7
° ou=Users,dc=mycorp,dc=com (cn=@USER@) Profiler

®

=

Use drag and drop to reorder LDAP user mappings

In addition to automatic user mapping, users can be defined as LDAP users with explicit LDAP DNs.

107

A single user mapping consists of a base LDAP DN whose entire subtree will be searched. The
user filter is an LDAP filter expression containing the character sequence @QJSER@that will be
replaced with the login name entered by the user. Each mapping has an associated access level
and may match exactly one LDAP DN. If zero or more than one matches are found, perfino will
try the next configured mapping.

LDAP user mapping x

Please configure an automatic LDAP user mapping.
The filter should match the login name @USER@ to a single LDAP user. If a single match

is found, this mapping will apply, otherwise the next mapping will be tried.

Search base* | ou=Users,dc=mycorp,dc=com

User filter {cn=@USER@) I* @

Access leve Profiler ~

License keys
As an administrator, you can add or remove license keys from perfino.

If more VMs are monitored than licenses are available, then some VMs will be marked as
"unlicensed" and no monitoring data will be available for those VMs. When you add a new license
key, perfino will start monitoring additional VMs right away, without the need for a restart.

The license key entry dialog can take multiple license keys, with each license key on a separate
line. One of the license keys in perfino has to be a product key, otherwise no VMs can be
monitored. License keys for additional VMs increase the maximum number of monitored VMs.

Please enter one or more license keys.
License keys should be entered on separate lines or separated by spaces.

License keys: *

Global settings

In the global settings, you can configure an SMTP server that is used for sending emails. Emails
are only sent by "Send email" trigger actions [p. 63]. If no SMTP server is defined, these actions
do not have any effect.

108

fg UsersandRoles @ License Keys & Global Settings & Export/import
Sending E-Mails

SMTP server: No SMTP server defined | Configure

Data Consolidation

perfino purges data with limited historical significance after a number of days in order to save disk space.

Please indicate how many days you would like to retain your data.

Keep transactions for — 60 days [_|Indefinitely
Keep method samples for - 4 days

Keep threshold viclations for e 31 days

Keep alerts for D — 60 days

Keep memory Snapshots for e 60 days

Reset To Default

Overload Protection

To avoid overloading the database and the Ul, perfino caps transactions, payloads and remote call sites.

The data consolidation options determine how long certain types of data are kept in the database.

For transaction data [p. 81], the maximum retention time can be indefinite or a fixed number
of days. Smaller time scales are consolidated progressively and independently of this setting, so
that for times that are far in the past, there is only a relatively small increase in the size of the
database. Method samples cannot be retained longer than transaction data.

Telemetries [p. 53] are consolidated automatically, the highest aggregation level remains in the
database indefinitely. Due to the large interval size, the linear increase in required storage space
is small.

Detailed data like method sampling takes a lot of space and is of decreasing interest the farther
back you go. After some time, it can be deleted. The higher the retention times are set, the more
disk space will be used by the database.

With the "frequency unit for telemetries" option you can make the numbers in telemetries easier
to interpret. It should be set to a value that fits with the typical throughput in your applications.
If your monitored VMs handle many transactions per second, you can set it to "per second", if
the transaction frequency is more on the order of minutes, the setting "per hour" will be
appropriate.

The global settings also show the currently installed version of perfino and let you configure
automatic update checking. If selected, perfino will check for updates within in the current major
version once a day. If an update is detected, an inbox message will be sent to all admin users.
The inbox message contains the new version and hyperlinks for change log and download. An
update notification will only be shown once even if perfino is restarted. When another version
is released, a new update notification will be sent, even if you have not updated perfino in the
meantime.

Whether you have enabled or disabled automatic update checking, the manual Check For Updates
Now button performs the same check live and shows you its results in a dialog right away.

109

A.3 Import And Export

There are several kinds of motivations for exporting and importing your perfino configuration:

+ Backup

Backing up your perfino server configuration from time to time is a good idea. The configuration
contains a lot of knowledge about your business transactions and their expected behavior. It
is a valuable piece of data that could be stored in a version control system.

+ Staging

If you have a staging environment where you try out changes in the perfino configuration
before deploying them to a production server, you need a way to transport the configuration
from one perfino installation to another.

+ Unattended deployment

If you deploy your perfino server to the cloud, you probably use the unattended installation
mode [p. 112] of perfino and install it on a server instance where no perfino server has been
installed yet. In that case you have to put the exported configuration next to the installer.

Server configuration

If you are an administrator, you can go to the general settings and select the "Export/Import"
tab. The entire configuration is exported to an XML file. When you import that file, the entire
server configuration is replaced. The change does not happen until you click on Apply Settings.
It is not possible to delete the current user that way.

General Settings - Click on "Go Back" to return to the data view ® GoBack

fg UsersandRoles & License Keys & Global Settings & Export/Import

Export

The entire configuration, including users, license keys, global configuration as well as the VM group configuration can be downloaded as a single file.

Export Configuration

The config file can be imported below, at startup by placing it in the installation directory, or at installation time by placing it next to the installer,
It is possible to export and impert selected VM group configurations in the "Recording & Triggers” panel.

Import

The entire configuration, including users, license keys, global configuration as well as the WM group configuration will be overwritten by the imported file.

Import Configuration

The XML file format is always backwards compatible, a more recent perfino server can read the
exported file of an older version.

110

Naming that file perfi no_server _confi g. xm and copying it to the perfino data directory
overwrites the entire configuration at startup. This mechanism is used by the unattended
installation [p. 112]. After the import, the file is deleted automatically.

Recording configuration

The exported XML file with the entire configuration contains license keys and user data. This
may not be what you want for staging or also for backup purposes. In the recording settings,
you can also export selected VM group configurations. Here, you can select "All VMs" or a particular
VM group and click on the export button on the right.

-
() perfino oo

Recording Options - Click on "Ge Back” to return to the data view ® GoBack
Group Transactions Sampling Options Telemetries Thresholds Triggers @
~ [All vMs 2

~ 3 pemo 2 2
®
~ 3 workers i} 1)

R oac 0 0

= s 0 0

8 web 0 0

Use drag and drop to reorder group configurations

Group configurations inherit recerding settings from their parent group unless settings are cverridden. Triggers and thresholds operate on all recursively
contained VMs and are not overridden.

The All JWMs group is for JVMs at the top-level, New groups can be added here or are automatically added when a JvM connects with a specified group.

This exportis not only available for administrators, but also for users with "profiler" access rights.

Naming this file per f i no_r ecor di ng_confi g. xml and copying it to the perfino data directory
overwrites the entire recording configuration at startup. The file is deleted automatically after
the import has been completed.

111

A.4 Unattended Installations

Unattended mode and response files

In case you want to fully automate the installation of perfino, you can pass the argument- q to
the installer. This makes the installer run in unattended mode. To set the installation directory,
pass the argument-dir [installation directory]:

./ perfino_unix.sh -q -dir /opt/perfino

To apply user input from a previous GUI or console installation, locate the response file
.install4j/response.varfil e in the installation directory and pass it to the installer with
the argument -varfile response.varfile. The response file is a plain text file and the
contained property definitions can be changed in a text editor. Properties related to the per f i no.
properti es file will not be picked up from the response file. To modify them, you have to use
the server configuration mechanism detailed below.

Automatic server configuration

In a cloud environment, you might want to recycle an instance or set up scripts that initialize a
new instance with a completely configured perfino installation. To help you with that task, the
perfino installer tries to read a number of optional configuration files with special names from
the same directory.

‘ parent directory

perfino_installer.[sh|exe|dmg]
r perfino.properties --=--==--==ss-smsmmoeo > server configuration
perfino_server_config.xml --=--=--=---- > monitoring configuration
optional < perfino_recording_config.xml --------1 > agent configuration
agent.ks -eromromoemsemosmosossoesoesoesoeeos > agent keystore
server.Ks — -rmmmmmsememsesssssesnee e > server keystore
~ —— web.pkes12 -ermmmmemmemeemeenoenonononeey > server SSL certificate

Each of those files is explained in the following sections.

Server configuration

To adjust values in per fi no. properti es, you simply copy a per fi no. properti es file from
the data directory of a configured installation into the same directory as the installer.

The installer will use the data in that file for the initial values. You can trim the contents of that
file to the properties that deviate from the defaults, the installer will supply the default values
for all other options. The basis for the structure of the actual per fi no. properti es file is the
default template in the installer, so it does not matter if you delete comments or change the
order of properties. Extra properties that are not present in the default template are merged in
at the end.

112

Monitoring configuration

The monitoring configuration includes everything you can adjust in the perfino Ul. Open the
general settings in a configured installation, select the "Export/Import" tab and click on "Export
configuration". This will save the entire server configuration to a file [p. 110]. If you rename that
file to perfino_server_config.xm and put it into the same directory as the installer, the
installer will automatically apply this configuration in the new installation.

Agent configuration

The monitoring configuration in the previous section includes the configuration for the agent.
However, there is one case where you might want to supply a separate agent configuration:
When the perfino agent connects to a perfino server for the first time, it receives its configuration
from the server and, as a consequence, some classes have to be reinstrumented for monitoring.

If your policy is to avoid all class retransformations, you can specify that on the "Options" step
of the VM group configuration. In that case, any configuration change will only be applied when
the monitored VM is restarted. To avoid the need for a restart in an unattended deployment,
the configuration for the agent can be imported in advance.

First, you have to open the recording settings and export the VM group configurations [p. 110] of
interest. Then, rename the exported fileto per fi no_r ecor di ng_confi g. xm and place it next
to the installer. The installer will perform the import for agents that are running on the local
machine. For other machines, you have to perform this import yourself by calling

java -jar perfino.jar inport perfino_recording_config.xm

The agent extracts its config from that file and writes it in binary form to the directory
$HOMVE/ . perfino/ confi g.
This directory is read by all agents on the local machine.

Note that these steps are only necessary if you want to avoid class retransformations. Otherwise
all configuration changes are applied on the fly.

Agent and server keystores

You can encrypt and authenticate [p. 103] the communication between monitored VMs and the
perfino server. The files agent . ks and server. ks constitute a key pair that enables both
encryption as well as mutual authentication.

For an unattended deployment, you will probably already be using a particular key pair with your
monitored VMs. In a configured perfino installation you can find these files in the ssl directory
below the data directory. Placing them next to the installer ensures that they are copied to the
same location in the new installation and that the server does not generate a new key pair.

Server SSL certificate

It is recommended to use SSL [p. 103] to encrypt the communication between the perfino Ul
server and browsers. If you enable SSL during the installation, a self-signed SSL certificate is
generated and saved to ssl / web. pkcs12 in the perfino data directory. You can replace that
file with a certificate that is signed by a well-known certificate authority.

If you have such a certificate, you can put it next to the installer with the name web. pkcs12. No
self-signed certificate will be generated in that case.

113

A.5 Automatic Update Of The Perfino Agent

When you set up a JVM for monitoring, you copy the perfino agent files to the machine where
the monitored JVM is running. When you update the perfino server, the question arises how the
agent files are updated.

While the server is shut down during an update, so that all of its files can be replaced, the
monitored JVM cannot be terminated just for updating a monitoring agent. This is why perfino
performs an automatic deployment of agent updates whenever the server installation is updated.

Server Update

You can check for updates within the same major series in the global settings [p. 105] and update
notifications are sent to you as inbox messages if automatic update checking is enabled.

When you update the perfino server, all monitoring agents are disconnected from the collector.
However, the agents continue to record data and will transmit it to the collector when it becomes
available again. After a disconnection, the agent will periodically try to reconnect to the perfino
collector with diminishing frequency. Data is only discarded if its quantity exceeds limits that are
considered unsafe with respect to memory overhead.

After a server update, the perfino agent may have changed with respect to the older version. In
that case, the VMs view will show an &~ update icon next to the VM name. The perfino server will
continue to work with agents of all previous versions, but new functionality may not be available
for JVMs that are being monitored with an outdated agent.

When the monitored JVM is restarted at some point in the future, the new agent will be used
automatically. There is no need for you to transfer new agent files to remote machines.

Agent Update Mechanism

When connected to a JVM that is monitored with an outdated perfino agent, the perfino server
transfers the new agent files to the remote machine. Because the original agent files are in use
and may be write protected, they cannot be overwritten. New agents are stored in the $HOVE/
. per fino/ agent 2 directory. In that directory there are subdirectories for each monitored VM
that in turn contain directories with the transferred agents.

When a monitored JVM is started, it loads the perfino.jar Java agent that you have
specified [p. 12] in the -j avaagent VM parameter. That Java agent bootstraps the actual
implementation of the monitoring agent by looking into $HOVE/ . per f i no/ agent 2 and selecting
the most recent agent files for the monitored JVM. If no agents have been transferred, the
implementation in the | i b directory of the extracted agent archive is used.

While the per fi no. j ar file with the bootstrapping code is never updated, it performs a limited
function at startup that does not impact the monitoring functionality itself. Even if the JAR file
changes in a newer release, it does not mean that you have to replace it on any remote machines.

114

A.6 Overload Protection

If too much information is generated that cannot be cumulated by the perfino collector, the
system would be overloaded - the perfino collector would not be able to keep up with its
consolidation efforts, the database would grow to eat up all disk space and the Ul would become
sluggish or unusable.

In a correct configuration, a limited amount of distinct information is generated. For the case
that the configuration is not optimal, perfino provides an overload protection mechanism that
prevents a breakdown by capping various recording types and warning you with inbox messages
that your configuration needs to be adjusted.

When an overload cap is reached, the recorded information is not discarded, but no new names
are generated and all further information is shown cumulated in a "capped description" node.
While total numbers remain correct, insight into recording details is restricted until you fix your
configuration and reset the cap counters.

Types of overloads

The problematic data collection types include

+ Transaction names

For example, if each distinct URL creates a transaction with the full URL path as its name and
you have a lot of different static resources, then too many transaction names are generated.
You should discard the static resource calls because they do not map to high-level business
transactions.

+ Payloads

For example, if you have configured to resolve non-prepared JDBC statements separately, and
the SQL statements contain non-numeric embedded IDs that perfino cannot extract and
replace with ID markers, there will be too many distinct statements after a certain amount of
time.

Another possibility is that your prepared statements contain parameters directly in the
statement body and not as bound variables. Such usage of prepared statements is non-optimal
and does not work with perfino.

* Remote call sites

perfino can track inter-VM calls for several technologies, like web services, EJB and RMI. For
each such remote call site, perfino has to split its transaction trees and maintain associated
information. In VM pools where many VMs call each other, this can lead to excessive overhead
if the number of calls grows like O(n"2) with the number of monitored VMs.

Configuring overload protection

Each overload type is configurable separately. Open the general settings, select the "Global
Settings" tab and change one of the maximum numbers in the "Overload protection" section.

Next to each overload type, a colored label informs you whether the particular cap has been
reached yet or not. For example, if the transaction name cap has been reached, a typical strategy
is to change the configuration so that less transaction names are created. After that, you want
perfino to start counting again from zero. Click the Reset all cap counters to zero button in order
to reset all counters.

115

B Advanced Topics

B.1 Annotation Transactions

Many frameworks use annotations for designating important classes and entry points that could
be turned into transactions in perfino. With the "Annotated invocations" transaction type you
can let perfino do this work for you.

Method and class annotations

An annotation transaction definition takes the fully qualified class name of the annotation that
you are interested in. Annotations can be either used on classes or on methods. Before
proceeding with the configuration, you have to tell perfino for which target the selected annotation
is used.

For an annotated method, each method invocation becomes a transaction in perfino. Annotations
on classes create transactions for all calls into public instance methods.

The second choice is whether derived classes should be considered as well. For methods, it can
be important to capture the time in an overridden method. For example, if a framework creates
an implementing proxy class and overrides the annotated method in order to add database
transactions, you want to intercept the method in the proxy class, and not only the annotated
method.

For annotated classes, the "Method selection" options determine which methods are selected
to generate transactions:

* Implementing methods only
If the annotation is placed on an interface that already defines all operations of interest with
its methods, you should select this option.

« All public methods

If the derived classes have their own methods of interest that do not implement or override
the methods in the annotated class, use this option to create transactions from all public
methods.

Create Annotated Invocation x

Please enter the details of the new business transaction.
Manitor methads or classes with a specified annotation. With this transaction type you can monitor many frameworks

that are not directly supported by perfino.

1. Annotation

Annotation class name® | com.framework.EntryPaint

Custom description *

Annotation target *) Annotated classes

Annotated methods

Intercept subclasses

Method selection

116

Naming

When you use annotations on classes with the setting for intercepting public methods in derived
classes, the question remains what class name should be used in the transaction naming.

By default, a naming element of type "Class name" adds the name of the class where the
intercepted method is defined. If you want to add the name of the annotated super class instead,
select the "Use annotated class name for filter and naming" check box in the "Annotation" step
of the wizard.

If you want to go the other way and add the class name of the actual instance on which the
method was called, use the "Instance class name" naming element instead.

B Class name

M Instance class name
@B Instance name

M Method name

& Fixed text

Even more specific, the "Instance name" naming element adds the t oSt ri ng() invocation on
the object where the transaction method was called.

Please enter the details of the new naming element.
Insert the result of the toString() method on the instance
Optionally,a getter chain can be specified that will be invoked on

the instance and substitutes the displayed value.

Getter chain *

This naming element can also apply a getter chain to this object and append the t oStri ng()
invocation on the result to the transaction name instead. For example, if the instance class has
a get Ver bose() method that returns the desired text, set the getter chain to get Ver bose() .
You can mix public field accesses and parameter-less invocations of public methods like this:

get Parent (). descri ptor. get Ver bose()

If you use the get d ass() method to append a class name, there are two special fields that are
provided by perfino to simulate the abbreviated and simple class name modes that are available
for the "Class name" and "Instance class name" naming elements:

« With get O ass() . si npl eNane, the name of the class without its package is added. For
example, com nycor p. MyCl ass becomes Myd ass.

« With get d ass() . abbr evNane, the abbreviated package names are added. For example,
com mycor p. My ass becomesc. m Myd ass.

Note that the "Instance name" naming element generates a far higher overhead than the "Instance
class name" or "Class name" naming elements, since it always involves actual method calls.

117

B.2 POJO Transactions

With POJO transactions you can take any method call in the JVM and turn it into a transaction.
The functionality for POJO transactions mirrors that of the DevOps transactions [p. 121] which
are specified directly in your code by using the perfino annotations.

POJO transactions are necessary if you cannot add annotations into your code or if the classes
of interest are in an external library. Otherwise, DevOps transactions are recommended for
easier maintainability.

Classes or methods

Similar to annotation transactions [p. 116], the first question is whether you want to choose a
single method or all public methods from a particular class.

Create Pojo Invocation .

Please enter the details of the new business transaction.
Monitor a selected method of an arbitrary dass

1. Interception Type

Interception type (®) Class or interface
single metheod of 3 class or interface

Intercept subclasses

If subclasses are intercepted, derived classes will be instrumented, otherwise only calls into the selected

class can start the transaction.

POJO transactions have the same configuration options regarding inheritance as annotation
transactions. You can switch on transactions from derived classes with the "intercept subclasses"
check box.

For a single method transaction, this means that overridden methods will create transactions
as well. If such a method makes a super call, that super call will create a separate transaction. If
the names of both transactions are equal, the super call will not be recorded separately. However,
with an "Instance class name" naming element it is easy to create two different names. In that
case, you will see the super method as a nested transaction. If this is not what you want, you
can set the "no nested transaction" option on the "Naming" step of the wizard to the value "That
match this entry".

The method of interest is conveniently chosen with the method chooser. It can show you classes
from all connected VMs or from JAR, WAR and EAR files that can be uploaded on the fly. You can
also edit the method manually in which case you have to take care to enter the method signature

in bytecode format .

M https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3

118

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3

Create Pojo Invocation x

Please enter the details of the new business transaction.
Monitor a selected method of an arbitrary class

1. Interception Type 2. Pojo Method

Class name com.mycorp.OrderHandler * | Q choose Method
Method name * handleCrder

Method signature * {Lcom.mycorp.Crder;)V

When editing directly, please note that the signature of the selected method is in bytecode format.

Custom description *

For classes, all public methods of the selected class will create transactions. When the inheritance
option is turned on, you can choose between two different strategies for method selection in
the derived classes.

+ Implementing methods only

This makes sense if you have selected an interface that defines all operations of interest with
its methods. Additional public methods in implementing classes will be ignored.

+ All public methods

The selected class may be a base class or a marker interface and the methods of interest are
in the derived classes. In this case, all public methods in derived classes will create transactions.

As an additional way to collect transaction methods you have the option to select static methods.
If the inheritance option is selected and all public methods are used, this will collect public static
methods in derived classes as well.

Create Pojo Invocation x

Please enter the details of the new business transaction.
Monitor a selected method of an arbitrary class

1. Interception Type 2. Pojo Class

Class name com.mycorp.OrderHandler * | Q choose

Custom description *

Method selection » Implementing or overriding public methods
All public methods of implementing or derived classes

If you select a marker interface or an abstract base class, select "All public methods of implementing or

derived classes”.

119

Naming

In addition to the naming elements that are available for annotation transactions, POJO method
transactions have a "method parameter" naming element. Method parameter interception only
makes sense if a particular method is selected, so it is not available for POJO class transactions.

B Class name

M Instance class name
@B Instance name

H Method parameter
@B Method name

Bl Fixed text

You can select a parameter by its zero-based index. In addition, a getter chain can be applied to
the parameter just like for the "Instance name" element that is described for annotation
transactions [p. 116].

Create Method Parameter x

Please enter the details of the new naming element.
Insert the value of a method parameter. The toString() methad
will be called on parameter values with reference types.
Optionally, a getter chain can be specified that will be invoked on
the instance and substitutes the displayed value.

Method parameter index* | 0

Getter chain *

120

B.3 DevOps Transactions

Maintaining POJO transactions in the perfino VM group configurations is an extra step in the
development workflow and can get easily out of sync with the actual code. While POJO transactions
are ideally suited for external classes, it is much more maintainable to directly annotate the
methods and classes of interest in your own code.

The naming of this transaction type comes from the DevOps " software development method
that stresses the importance of increased collaboration between the development and the
operations departments. Thinking about and implementing monitoring aspects at development
time falls into this category.

The perfino annotations are located in the JAR file api / perfi no_api . ar, see the javadoc
overview for how to download this JAR file with Maven, Ivy or Gradle.

All annotations have a class retention policy. This means that they are present in the class file,
but the JVM does not load them into memory. Code that queries runtime annotations on a
particular method cannot be confused by the additional perfino annotations because they are
only detected by perfino at the class loading stage and do not appear in the loaded class objects.

The usage of DevOps transactions is described in detail in the Javadoc that is present in the
api / doc directory of the perfino installation.
Policies

DevOps annotations only define the transaction naming, but not the policies for transactions.
Policies are closer to the operations side and often need to be adjusted in production.

It is possible to select different DevOps annotations in the perfino configuration by way of the
group name. Each DevOps annotations can have a "group" parameter that is set to the empty
string by default.

Create DevOps Annotated Invocation x

Please enter the details of the new business transaction.
Meonitor methads or classes with perfino annotations. This transaction type allows developers to define transactions in

code.

1. Annotation

Restrict to group name * v order

The perfino DevOps transaction annotations like "MethodTransaction” or "ClassTransaction” have a group parameter that can
be set for each annotation

In this way you can create different transaction categories for which policies can be set with a single configuration entry.

If the configured groups are not sufficiently granular or if you want to single out a particular
class, go to the next step to add a class filter. Here, it is also possible to discard all DevOps
transactions that originate from the selected group and classes.

M https://en.wikipedia.org/wiki/DevOps

121

https://en.wikipedia.org/wiki/DevOps

Create DevOps Annotated Invocation x

Please enter the details of the new business transaction.
Meonitor methads or classes with perfino annotations. This transaction type allows developers to define transactions in
code.

1. Annotation 2. Filter

Package filter * - Q, choose | |wildcard comparison

Custom description *

Discard transactions

On the last step of the wizard, you define the policies for the selected DevOps transactions. As
with other transaction types, it often makes sense to keep a catch-all transaction definition at
the bottom and add more specific transaction definitions at the top.

122

B.4 Customizing Net I/0 Thread States For CPU Recording

perfino offers you the possibility to record natively sampled CPU data [p. 94] with minimum
overhead and stability risk for the entire VM. The resulting snapshot files can be viewed in JProfiler.

One pre-condition for useful sampling data is that all thread states where the thread is waiting
are separate from the default "Runnable" thread state. If that is not the case, the top hotspots
usually consist of methods that wait, block or perform network input and output (net I/0).

While waiting and blocking are comprehensively handled by the perfino sampling library, network
I/0 is often performed via native libraries that perfino does not know about. To mitigate this
problem, perfino offers a mechanism to specify a list of additional methods that will be considered
as net I/0.

To do that, you can specify the system property - Dper fi no. neti oMet hods=[path to text
file] inthe Java invocation of the monitored VM. The referenced text file must be located on
the machine where the monitored VM is running. Alternatively, perfino looks for the file $HOVE/
. perfino/netio.txt onLinux/Unixor %JSERPRCOFI LE% . per fi no\ neti o.txt onWindows.

In the neti 0.t xt file, add your net I/0O method definitions, one definition per line. A method
definition can have one of three forms:

* Class wildcard

Add a class name with a trailing asterisk, like
com nycor p. M/d ass. *

If you reference an inner class, the inner class separators must be written as dollar signs:
com nycor p. My ass$l nner C ass. *

In this case, all methods of the selected class will be recorded in the net I/O state.

+ Signature wildcard

Add a class name and a method name, separated by a dot, like
com nycor p. Myd ass. myMet hod

In this case, all methods of the selected class with the specified name but with an arbitrary
signature will be recorded in the net I/0O state.

+ Specific method

Like "Signature wildcard", but with the signature in bytecode format appended at the end. For
example,

j ava. net . Abst ract Pl ai nSocket | npl . doConnect (Lj ava/ net/| net Address; 1 1)V

This is an actual net I/0 method that is handled by default, the signature is for a method that

returns void and takes aj ava. net . | net Addr ess and two i nt parameters. This is the same

format that is used by JNI type signatures .

The single specified method will be recorded in the net I/O state as a result of this definition.
M https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#type_signatures

123

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#type_signatures

	Introduction
	Architecture
	Installing
	Monitoring JVMs
	Basic concepts
	UI
	Transactions
	Policies
	Cross-VM monitoring
	Probes
	Method Sampling
	Telemetries
	Thresholds
	Triggers
	Alerts
	End user experience monitoring
	Memory
	Historical comparisons
	MBean browser
	REST export API
	Cross-over to profiling
	Configuration
	Server configuration
	Server administration
	Import/Export
	Unattended installations
	Automatic agent update
	Overload protection

	Advanced topics
	Annotation transactions
	POJO transactions
	DevOps transactions
	Customizing net I/O methods

