EJ Technologies

The definitive guide to JProfiler

All you need to know as a performance professional

© 2019 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
ATCIITECEUIE ettt b bbbt bt et e b et et et e st e a e st e bt e bt e bt e bt e b e sbesbesbesbesbesbenbeneen 5
INISEAIIINE 1evveiteieietetee ettt ettt ettt e e e e s e e s e e be s s e sb e st e sbesb e st et e e b et et et e s sentenneneeraeneeneeraereerens 7
PrOTIING @ JVIML ettt bbbttt et et e st st s bt s atebesbesaesbesbesbesbes 10
RECOIAING LA .ttt bbbttt et ettt e bt et aeebesbesbesbesbeebes 23
SNAPSNOLS ettt ettt e e b e e b bt s bbb et e b et et e st et e e enteneeseeseereeres 36
TEIEIMELIIES vttt ettt sttt b e s bbb b et et et et et et e st e st eaeebeebesbesbesbesbesbe st antenee 41
CPU PrOfIlING ettt sttt ettt et et e st e bt e bt ebesbesbesbesbesbesbens 46
MEMONY PrOTHING weevveeeiiiiiiisiresese ettt s e s st e s e s be st e sbesb e st e be b essessessensesaesaessesassassens 60
THE NEAP WAIKET ettt sttt sttt et ettt e bt et et s b sbesbesbesbesbesbensensen 69
TRrEAd PrOfilING .ottt ettt et et be b bbb nnennes 85
PIODES .ttt ettt bbbt bbbt b et b bbb bt b enenbens 91
IMBEAN DIOWSET ..ttt ettt sttt st sttt et ettt et et e st e aeeaesbesbesbesbesbesbesbesbensens 104
OFfliNG PrOfIlING ettt b sttt et 108
COMPAriNG SNAPSNOTS ...ouviiiiiiiiiiriresesese ettt e e e e esaese e e s e ssesbesbasbesbestessessessensensens 113
IDE INTEEIATIONS weeteteeiieiieite ettt ettt ettt et s bt et e s bt et e s bt et e s bt et e sbe e b e sbe e b e sseenbesneesesaeensesasenseeneenes 120
A CUSTOM PIODES ..ttt ettt ettt b e bt b e s bbb enbesbe st e eeneen 128
AT ProDE CONCEPLS ittt sttt st ettt sbe et e sbaestesba e besasensesbaensesssensasanens 128
A2 SCIIPE PIODES oottt ettt s b st st st s b e s b et e b et e s esseseesaenseseesessessenes 134
A3 INJECLEA PrODES .ottt sttt et ettt e e b sreereeee 138
A4 EMDEAAEd PrODES ..ottt bbbttt 143
B Call tree features in detail ..ottt 147
B.1 Auto-tuning for iNSTrumMENtAtioNccvieieerinicenesere e resbe v e 147
B.2 REQUESE TrACKING ©ivevveriiriiieiirieieietee st sre st steste st st st e b st et e bessessessensesaessesessessessessessessenns 150
B.3 Viewing parts 0f the Call TrEE ..ottt sbe 154
B.4 SPHETHING the Call TrBE ..cuiieeeeeeeee ettt st a e e nee 159
B.5 Call trE@ @NQAIYSES ...ttt ettt st st h s bbb naeneen 163
C Advanced CPU @nalySiS VIBWS ...cc.ivieriiriinienienienteniessesieetesiessesseessessesssessesssessesssessasssesssessessesnes 168
C.1 MO STALISTICS tuveverreerterieiirieiirieertetet ettt ettt b e b et e bt st e st b e e bt ene st ene 168
C.2 COMPIEXITY @NAIYSIS tveviriiiiieierieieete ettt sttt s b ettt se e e e e e e ssesbesbesbesbesbesbens 172

(GG = I 4=l =] RO 174

.4 JaVASCEIPT XHR oottt sttt sttt sat e st e e b e satesbeesbeesateebeesatesabeessnesasesnseenns 176

D Heap walker features in detailococivireririniininisiesesieeeet ettt st s st 179
D.1 HPROF SNAPSNOLS ..ttt sttt ettt ettt st sbe bbb 179
D.2 MIiNIMIZING OVEINEAMoouiiiitiieeeeee ettt sttt et 181
D.3 Filters and iVe INTEraCLiONSccuevueieieieiete ettt 183
D.4 FINAINE MEMOIY 1€AKS ..ooviviiriiiiiriiriisienienieieteieteesee e sre et sbe st st st s essesaesaessesessassnsns 186

E Configuration iN LAlccuecueieieieieieee ettt ettt 193
E.1 Trouble shooting connection ProbIemMS ..o 193
E.2 SCIIPTS oottt st b e bt e b e e b neas 194

F Command liNe referenCe ..o e 197
F.1 Executables fOr Profiling ...ttt a s e ssesaeenes 197
F.2 Executables for SNAPSNOLS ..ottt 200
F.3 Gradle taSKS ..ottt sttt sttt ettt ettt h s b bbbt ne e 209

Y oY o = Y RO 213

Introduction To JProfiler

What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can use
it in development, for quality assurance and for firefighting missions when your production
system experiences problems.

There are four main topics that JProfiler deals with:

* Method calls

This is commonly called "CPU profiling". Method calls can be measured and visualized in
different ways. The analysis of method calls helps you to understand what your application
is doing and find ways to improve its performance.

» Allocations

Analyzing objects on the heap with respect to their allocations, reference chains and garbage
collection falls into the category of "memory profiling". This functionality enables you to fix
memory leaks, use less memory in general and allocate fewer temporary objects.

* Threads and locks

Threads can hold locks, for example by synchronizing on an object. When multiple threads
cooperate, deadlocks can occur and JProfiler can visualize them for you. Also, locks can be
contended, meaning that threads have to wait before they can acquire them. JProfiler provides
insight into threads and their various locking situations.

+ Higher level subsystems

Many performance problems occur on a higher semantic level. For example, with JDBC calls,
you probably want to find out which SQL statement is the slowest. For subsystems like that,
JProfiler offers "probes" that attach specific payloads to the call tree.

JProfiler's Ul is delivered as a desktop application. You can interactively profile a live JVM or profile
automatically without using the Ul. Profiling data is persisted in snapshots that can be opened
with the JProfiler Ul. In addition, command line tools and build tool integrations help you with
automating profiling sessions.

How do | continue?

This documentation is intended to be read in sequence, with later help topics building on the
content of previous ones.

First, a technical overview over the architecture [p. 5] will help you to understand how profiling
works.

The help topics on installing JProfiler [p. 7] and profiling JVMs [p. 10] will get you up and running.

Following that, the discussion of data recording [p. 23] and snapshots [p. 36] take you to a level
of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler. The
sections at the end are optional readings that should be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

JProfiler Architecture

The big picture of all important interactions involving the profiled application, the JProfiler Ul
and all command line utilities is given below.

jpexport
jpcompare

jpanalyze JProfiler UI

[jpcontroller }

> Snapshots

Lremoteorlocal e
local transmits | connects via connects
data socket via JMX
e N
P N loadsvia
jpenable attach JProfiler publishes | |JProfiler
agent MBean
A
p ., takes HPROF
. heap dump
— ———
jpdump Profiled JVM
|\ J
loads with controls with
-agentpath offline profiling
Command line arguments
|\ J
—» loads the profiling agent (D command line tool
——3 controls recording D process component
——» profiling data [] data

The profiling agent

The "JVM tool interface" (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least part

of the profiling agent must be implemented as native code and so a JVM profiler is not
platform-independent. JProfiler supports a range of platforms that are listed on the web site .

A JVM profiler is implemented as a native library that is loaded either at startup or at some point
later on. To load it at startup, a VM parameter - agent pat h: <path to native library>is
added to the command line. You rarely have to add this parameter manually, because JProfiler
will add it for you, for example in an IDE integration, an integration wizard or if it launches the
JVM directly. However, it's important to know that this is what enables profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to give
the profiling agent a chance to initialize itself. JProfiler will then print a couple of diagnostic
messages prefixed with JPr of i | er > so you know that profiling is active. The bottom line is that
if you pass the - agent pat h VM parameter, the profiling agent is either loaded successfully or
the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such as thread
creation or class loading. Some of these events directly deliver profiling data. Using the class
loading event, the profiling agent instruments classes as they are loaded and inserts its own
bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler Ul, or with
the bi n/j penabl e command line tool. In that case, a substantial number of already loaded
classes may have to be retransformed in order to apply the required instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler Ul is started separately and
connects to the profiling agent through a socket. This means that it is actually irrelevant if the
profiled JVM is running on the local machine or on a remote machine - the communication
mechanism between the profiling agent and the JProfiler Ul is always the same.

From the JProfiler Ul, you can instruct the agent to record data, display the profiling data in the
Ul and save snapshots to disk. As an alternative to the Ul, the profiling agent can be controlled

through its MBean “. A command line tool that uses this MBean is bi n/ j pcontrol | er.

Yet another way to control the profiling agent is with a predefined set of triggers and actions. In
that way the profiling agent can operate in unattended mode. This is called "offline profiling" in
JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler Ul can show live profiling data, it is often necessary to save snapshots of all
recorded profiling data. Snapshots are either saved manually in the JProfiler Ul or automatically
by trigger actions.

Snapshots can be opened and compared in the JProfiler Ul. For automated processing, the
command line tools bi n/ j pexport andbi n/ j pconpar e can be used to extract data and create
HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bi n/ j pdunp
command line tool. It uses the built-in functionality of the JVM to save an HPROF snapshot that
can be opened by JProfiler and does not require the profiling agent to be loaded.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
) https://en.wikipedia.org/wiki/Java_Management_Extensions

6

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler

Executable installers are provided for Windows and Linux/Unix that lead you step-by step through
the installation. If a previous installation is detected, the installation is streamlined.

© Setup - JProfiler - m} X

Welcome to the JProfiler Setup Wizard

This will install JProfiler on your computer,

A previous installation has been detected, Do you wish to update that
installation?

@ fes, update the existing instaliatiord @

(O No, install into a different directory

Click Next to continue, or Cancel to exit Setup.

On macOSs, JProfiler uses the standard installation procedure for Ul applications: a DMG archive
is provided that you can mount in the Finder by double-clicking on it, then you can drag the
JProfiler application bundle to the / Appl i cati ons folder. That folder is visible as a symbolic
link in the DMG itself.

[NN] — JPrafiler

JProfiler

On Linux/Unix, installers are not executable after download, so you have to prepend sh when
executing them. The installer performs a command line installation if you pass the parameter
- ¢. Completely unattended installations for Windows and Linux/Unix are performed with the
parameter - g. In that case, you can pass the additional argument-di r <di rect ory>inorder
to choose the installation directory.

@ S @ ingo@ubuntu: ~/Downloads

ingo@ubuntu:~/DownloadsS sh jprofiler_linux_18 _©_2.sh -c
Starting Installer ...

This will install JProfiler on your computer.

0K [o, Enter], Cancel [c]

A previous installation has been detected. Do you wish to update that installati

s, update the existing installation [1, Enter]
, install into a different directory [2]

After you run an installer, it will save a file . i nstal | 4j / response. varfi | e that contains all
user input. You can take that file and use it to automate unattended installations by passing the
argument-varfile <path to response.varfil e>onthecommand line.

To set licensing information for unattended installations, pass - Vj profiler.|icenseKey=
<license key> -Vjprofiler.licenseName=<user nane> and optionally -Vj profiler.
| i censeConpany=<conpany nane>ascommand line arguments. If you have a floating license,
use FLOAT: <server name or | P address>instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The command
tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute bi n/
j profiler inthe extracted directory. On Linux/Unix, the filej profi | er. deskt op can be used
to integrate the JProfiler executable into your window manager. For example, on Ubuntu you
can drag the desktop file into the launcher side bar in order to create a permanent launcher
item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop Ul together with the command line utilities that operate on
snapshots on the one hand, and the profiling agent together with the command line utilities that
control the profiled JVM on the other hand. The installers and archives that you download from
the web site contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the remote
side. While you can simply extract an archive with the JProfiler distribution on the remote machine,
you may want to limit the amount of required files, especially when automating a deployment.
Also, the profiling agent is freely redistributable, so you can ship it with your application or install
it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards offer the option
to create such an archive for any of the supported platforms. In the JProfiler GUI, invoke
Session->Integration Wizards->New Server/Remote Integration, select the "Remote" option and then
the Create archive with profiling agent check box on the Remote installation directory step.

@ Integration Wizard - [Generic application] on Remote Linux X36/AMD64 x

L. Choose wizard Specify the remote installation directory
2. Local or remote
3. Profiled 2vM

4, Startup mode

The profiing agent must be available on the remote Linux X86/AMD&4 machine.

Please spedify the JProfiler installation directory on the remote machine, for example

5. Remote ac!drass . _ " foptfjprofiler 107,

6. Remote installation directory

7. Choose profiling port Remote installation directory: | foptfjprofiler 10
8. Perform modifications

9. Finished

If JProfiler is not installed, you can create an archive that contains the profiing agent
and extract it in the above directory.

Create archive with profiing agent in the directory:

C:\Users\Bob\Documents

4 Back MNext B Finish Cancel

If necessary, JProfiler will download the required native agent libraries together with the j penabl e,
j pdunp andj pcontrol | er executables and create a .tar.gz or .zip archive depending on the
target platform. All the above executables in the archive only require Java 6 as a minimum version,
while the profiling agent works with Java 5 or higher.

The sub-directories that you see after extracting the archive on the remote machine are described
below. They are a subset of a full JProfiler installation on the respective target platform.

top-level directory after extraction

.install4j ------mmemmemmemmeeee > runtime for launchers
— bin --rremee s > agent JAR file and helper executables
': <platform-64> ------- > native libraries for 64-bit JVMs
<platform-32> -------1 > native libraries for 32-bit JVMs
— lib - »> support libraries for attach functionality

Profiling A JVM

To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen in two
different ways: By specifying an - agent pat h VM parameter in the start script or by using the
attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile and is
used by the integration wizards, the IDE plugins and session configurations that launch a JVM
from within JProfiler. Attaching works both locally as well as remotely over SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
- agent pat his a generic VM parameter provided by the JVM for loading any kind of native library
that uses the JVMTI interface. Because the profiling interface JVMTI is a native interface, the
profiling agent must be a native library. This means that you can only profile on the explicitly

supported platforms . 32-bit and 64-bit JVMs also need different native libraries. Java agents,
on the other hand, are loaded with the - j avaagent VM parameter and only have access to a
limited set of capabilities.

After - agent pat h: , the full path name to the native library is appended. There is an equivalent
parameter - agent | i b: where you only specify the platform-specific library name, but then you
have to make sure that the library is contained in the library path. After the path to the library,
you can add an equals sign and pass options to the agent, separated by commas. For example,
on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofilerl10/bin/linux-x64/1ibjprofilerti.so=port=8849, nowai t

The first equals sign separates the path name from the parameters, the second equals sign is
part of the parameter port =8849. This common parameter defines the port on which the
profiling agent s listening to connections from the JProfiler GUI. 8849 is actually the default port,
so you can also omit that parameter. If you want to profile multiple JVMs on the same machine,
you have to assign different ports, though. The IDE plugins and the locally launched sessions
assign this port automatically, for integration wizards you have to choose the port explicitly.

The second parameter nowai t tells the profiling agent not to block the JVM at startup and wait
for a JProfiler GUI to connect. Blocking at startup is the default, because the profiling agent does
not receive its profiling settings as command line parameters but from the JProfiler GUI or
alternatively from a config file. The command line parameters are only for bootstrapping the
profiling agent, telling it how to get started and for passing debug flags.

By default, the JProfiler agent binds the communication socket to all available network interfaces.
If this is not desirable for security reasons, you can add the option addr ess=[| P addr ess] in
order to select a specific interface.

Locally launched sessions

Like "Run configurations" in an IDE, you can configure locally launched sessions directly in JProfiler.
You specify the class path, the main class, working directory, VM parameters and arguments and
JProfiler launches the session for you. All the demo sessions that ship with JProfiler are locally
launched sessions.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

10

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

@ Session Settings X

Profiled WM ' Code Editor & Compilation
—
Session name @ |Animated Bezier Curve Demo Id: 101)
Application .
Settings Session Type
‘ Attach to an already running Hotspot IVM and profile it
I Attach Attach type: Select from all local VMs Attach to remote JVM
Filter & ;
Settings of Launch a new JVM and profie it
. Launch Launch type: | (@) Application | (O Web Start
Prafiing Application Settings
Settings Java UM: 1.8 [C:'Program Files\Java'jdk1.8.0_101Yjre] - Configure JREs
Working directory: [startup directory]
VM options: o
Triggers
Settings Main class or executable JAR: |bezier.Bezier Anim
Program arguments: block (7]
; [[] Open browser with URL
Datzbase
Settings Java File Path
o demo'\bezier\dasses +
Class path
EEm @ Cassp x
Probes () Source path) St
(O Lirary path @) Y
v
General Settings Cancel

A special launch mode is "Web Start" where you select the URL of the JNLP file and JProfiler will
launch a JVM to profile it.

@ Session Settings X

Profiled VM ' Code Editor & Compilation

—
Session name ¢ |Web Start Session Id: 103 @

Application .
Settings Session Type
‘ Attach to zn zlready running Hotspot VM and profile it
I Attach Attach type: Select from all local WMs Attach to remote VM
Filter o . A orcfie
Settings g | Lencharen NMand profiet

Launch | Launch type: (O) Application | (@) Web Start

Web Start Settings

Profiling
Settings URL of the JNLP file: |http://fwww.jgoodies. com/download fjdiskreport2/jdiskreport. jnip
Java VM: 1.8 [C:\Program Files\Java\jdk1.8.0_101%jre] ~ Configure JREs

Triggers Java File Path

Settings Note: the classpath s used for the bytecode viewer nly.
Database x

cl th
Settings © s e ah
(O source path @)
EER ~
Prabes v

General Settings Cancel

Locally launched sessions can be converted to standalone sessions with the conversion wizards
by invoking Session->Conversion Wizards from the main menu. Convert Application Session to Remote
simply creates a start script and inserts the - agent pat h VM parameter into the Java call. Convert
Application Session to Offline creates a start script for offline profiling [p. 108] which means that

11

the config is loaded on startup and the JProfiler GUI is not required. Convert Application Session
to Redistributed Session does the same thing, but creates a directory j profil er _redi st next
to it that contains the profiling agent as well as the config file so you can ship it to a different
machine where JProfiler is not installed.

@ IProfiler - m] X
Session View Profiling Window Help

B Start Center Ctrl+0 9

]
T New Window Crl+Alt+0 4 Run G

Add Wiaw
fna Bockmark | EFO IRl

Settings
Compare Snapshots in New Window

Attach Current Session F11

New Session Ctrl+N
Quick Attach Ctrl+Alt+A

Integration Wizards >

83 8 =

Conversion Wizards Convert Application Session to Remote

Convert Application Session to Offline
Open Session
Convert Application Session to Redistributed Session

Export Session Settings

Import Session Settings

L‘I Save Cirl+5 Q Please start a profiling session or open a snapshot to view data
Open Snapshot
Recent Snapshots »

[Session Settings Ctrl+F11
General Settings Ctrl+F12

IDE Integrations

Close Session
™ Close Window Crl+ W
Exit JProfiler Ctrl+Alt+X

~

& Detached

If you develop the profiled application yourself, consider using an IDE integration [p. 120] instead
of a launched session. It will be more convenient and give you better source code navigation. If
you do not develop the application yourself, but already have a start script, consider using the
remote integration wizard. It will tell you the exact VM parameter that you have to add to the
Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start scripts
or config files that can be modified programatically to include additional VM parameters. For
some products, start scripts can be generated where VM parameters are passed as arguments
or via environment variables.

12

@ Integration Wizard

1. Choose wizard
2. Local or remote

3. Profiled VM This wizard integrates your application server or remote application with JProfiler,
4, Startup mode Choose the appropriate wizard from the list below,

Choose integration wizard

If your application server is not listed, choose "[Generic application server]” to get step
by step instructions for manual integration

B [Generic application server] ”~
gﬂ [Generic application]

"h‘ Java browser plugin

] installdifexed; project

E Apache Geronimo 3.x

E Apache Geronimo 2.x

E Apache Geronimo 1.x

E Apache Tomcat 8.x

E Apache Tomcat 7.x

E Apache Tomcat 5.x

E Apache Tomcat 5.x {with tomcats.exe)
E Apache Tomcat 5.x

Filter: | 0

MNext B Finish Cancel

In all cases, you have to locate some specific file from the third-party product, so JProfiler has
the necessary context to perform its modifications. Some generic wizards only give you
instructions on what you have to do in order to enable profiling.

@ Integration Wizard - Apache Tomcat 8

X
L. Choose wizard Locate the start script
2. Local or remote
3, Profiled VM Flease locate the start script for Apache Tomcat &.x below.
4, Startup mode
5. Locate start script c:\Users'\Boblappserversitomeatipin'\star tup. bat
6, Choose profiling port
7. Check modifications Mote: the usual name of the start scriptis
8. Finished startup.bat

The chosen startup script will not be modified. A& new startup script for profiling will be
generated in the same directary.

4 Back Mext B Finish Cancel

The first step in each integration wizard is the choice whether to profile on the local machine or
on a remote machine. In the case of the local machine you have to provide less information,

because JProfiler already knows the platform, where JProfiler is installed and where its config
file is located.

13

@ Integration Wizard X

1. Choose wizard

2. Local or remote
3. Profiled VM The profiled application can either run on this computer or on a remote computer. If
4, Startup mode the remote computer™ option is selected, JProfiler must be installed on that computer,

Where is the profiled application located?

The profiled application is located:
(®) On this computer

(0) ©On a remote computer

Platform of the remote computer: | Windows X86/AMDE4

4 Back MNext B Finish Cancel

An important decision is the "startup mode" that was discussed above. By default, the profiling
settings are transmitted from the JProfiler Ul at startup, but you can also tell the profiling agent

to let the JVM start immediately. In the latter case, the profiling settings can be applied once the
JProfiler GUI connects.

© Integration Wizard X

1. Choose wizard
2. Local or remote
3, Profiled VM Flease choose whether you would like your application server to wait for a connection
4. Startup mode from the JProfiler GUI frontend before starting up:

Choose whether to wait for the JProfiler GUI

() wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at startup.
With this option you can profile the startup phase of your application.

| (®) Startup immediately, connect later with the JProfiler GUI

[Easy] Profiing settings are transmitted directly by the JProfiler GUI once you
connect,

() Profile offine, JProfiler GUI cannot connect

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Finish Cancel

However, you can also specify a config file with the profiling settings which is much more efficient.
This is done on the Config synchronization step. The main problem in this case is that you have
to synchronize the config file with the remote side each time you edit the profiling settings locally.
The most elegant way is to connect to the remote machine via SSH on the Remote address step,
then the config file can be transferred automatically via SSH.

14

@ Integration Wizard - [Generic application server] on Remote Linux X36/AMDG4 X

1. Choose wizard Choose how to synchronize profiling settings

2. Local or remote

3. Profiled VM The profiling agent can receive its profiing settings when the connection is made from the
4, Startup mode JProfiler GUI.

5. Remote address

6. Remote installation directory
7. Config synchronization
8, Choose profiling port

9. Perform modifications

10, Finished (®) Apply configuration at startup

However, dass retransformations can take a lot of time. For fast connections, you can spedify
the configuration at startup.

(0 Apply configuration when connecting with the JProfiler GUI

Directory for config file on remote computer: | fhome /build fconfig
(0 Manual synchronization (7]

(®) Copy with S5H to remote directory |0

(C) Copy config file to directory: (7]
() Execute command: (7]
4 Back Next p Finish Cancel

At the end of the integration wizard, a session will be created that starts profiling and - in the
non-generic cases - also starts the third party product, such as an application server.

@ Integration Wizard - [Generic application server] on Remote Linux X86/AMDB4 X
1. Choose wizard Integration is completed

2. Local or remote

3. Profiled VM The integration of your application server has been completed successfully.

4, Startup mode

5. Remote address

&. Remote installation directory
7. Config synchronization

8. Choose profiling port

9. Perform modifications

10. Finished () No, I will start the session later

To profile, you have to manually start your application server first.

When you dick on Finish, the remote session can be started immediately,

I@ Yes, start the session and wait for the application server. I

Edit Session And Synchronize Config

The created session has been named

Application server on demo

4 Back MNext p Finish Cancel

External start scripts are handled by the Execute start script and Execute stop script options on the
Application settings tab of the session configuration dialog and URLs can be shown by selecting
the Open browser with URL check box. This is also the place where you can change the address
of the remote machine and the config synchronization options.

15

@ Session Settings

—

Application
Settings

1‘5

Filter
Settings

o
Profiling
Settings

Triggers
Settings

E |

Datzbase
Settings

JEE&
Prabes

General Settings

Profiled WM ' Code Editor & Compilation
Sesgion name @ |Application server on demo 1d: 103)
Session Type
‘ Attach to an already running Hotspot WM and profile it
Attach Attach type: (0) Select from all local WMs (@) Attach to remate JVM
@i Launch a new VM and profik it
Launch Launch type: Application Web Start
Profiled VM Settings
If you have not yet prepared a VM for profiling, it is recommended to run an integration wizard. It will create the
remote session for you.
S5H tunnel + | |Direct S5H to demo:B849 Edit | @
[[] Use SOCKS proxy
Execute start command: c:\Users\bob'appserver'startServer. bat (7]
Execute stop command: c:\Users\bob\appserveristopServer.bat (7]
Open browser with URL: http:/localhost:3080 (7]
Connection timeout: 605 seconds Config Synchronization Options
Java File Path

Mate: the classpath is used for the bytecode viewer aniy.

(®) Class path
(O Source path @)

The integration wizards all handle cases where the profiled JVM is running on a remote machine.
However, when a config file or start script has to be modified, you have to copy it to your local
machine and transfer modified versions back to the remote machine. It may be more convenient
to directly run the command line tool j pi nt egr at e on the remote machine and let it perform

its modifications in place. j pi nt egr at e requires a full installation of JProfiler and has the same

JRE requirements as the JProfiler GUI.

ingo@ubuntu: ~
ingo@ubuntu:~$ jprofiler18/bin/jpintegrate
Welcome to the JProfiler console integration wizard!

How do you want to find your integration wizard?
search by keyword [1, Enter], List all wizards [2]

)

Please enter a number of keywords separated by spaces (for example: Tomcat 5)

Websphere

Please choose
IBM Websphere
IBM Websphere
IBM Websphere

one of the following integration wizards:
9.x Application Server [1]
8.x Application Server [2]
7.0 Application Server [3]

IBM Websphere 6.1 Application Server [4]
IBM WebSphere Community Edition 2.x [5]

When an error occurs while starting a remote profiling session, see the trouble-shooting guide

[p. 193] for a check list of steps that you can take to fix the problem.

16

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you usually
start your application from your IDE during development, the IDE already has all the required
information and the JProfiler plugin can simply add the VM parameter for profiling, start JProfiler
if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the i nt egr at i ons directory in the JProfiler installation. In
principle, the archives in that directory can be installed manually with the plugin installation
mechanisms in the respective IDEs. However, the preferred way to install IDE integrations is to
invoke Session->IDE integrations from the main menu.

@ General Settings X

JDK and JREs Session Defaults Snapshots ?Updabes Miscellaneous

IDE Integration
To integrate JProfiler with an IDE, choose the target IDE and dick on "Integrate” below.

Intelli] IDEA 2017.x v

[Jo

cance

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such a
session could not be started from the JProfiler GUI. Profiling settings are persisted on a per-project
or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes it easy
to jump back to the associated window in the IDE. All the Show Source actions now show the
source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 120] .

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With the
attach functionality in JProfiler, you can select a running JVM and load the profiling agent on the
fly. While attach mode it convenient, it has a couple of drawbacks that you should be aware of:

* You have to identify the JVM that you want to profile from a list of running JVMs. This can
sometimes be tricky if a lot of JVMs are running on the same machine.

+ There is additional overhead because potentially many classes have to be redefined to add
instrumentation.

+ Some features in JProfiler are not available in attach mode. This is mostly because some
capabilities of the [VMTI can only be switched on when the JVM is being initialized and are not
available in later phases of the JVM's lifecycle.

« Some features require instrumentation in a large fraction of all classes. Instrumenting while
a class is being loaded is cheap, adding instrumentation later on when the class has already
been loaded is not. Such features are disabled by default when you use attach mode.

17

+ Attach functionality is only supported for Oracle JVMs with version 6 or higher.

The Quick Attach tab in JProfiler's start center lists all [VMs that can be profiled. The background
color of the list entries indicates whether a profiling agent has already been loaded, whether a
JProfiler GUI is currently connected or if offline profiling has been configured.

When you start a profiling session, you can configure profiling settings in the session settings
dialog. When you repeatedly profile the same process, you do not want to re-enter the same
configuration again and again, so a persistent session can be saved when you close a session
that has been created with the quick attach feature. The next time you want to profile this process,
start the saved session from the Open Session tab instead of the Quick Attach tab. You will still
have to select a running JVM, but the profiling settings are the same ones that you have already
configured before.

@ Session Settings X
Profiled VM ' Code Editor & Compilation
—
Session name : |Local Attach Session Id: 103 @
Application .
Settings Session Type
‘ Attach to zn zlready running Hotspot VM and profile it
I Attach Attach type: | @) Select from all local Ms | () Attach to remate VM
Filter rr . A orcfie
Settings fod Leunch a new JVM and profike it
Launch Launch type: Application Web Start
o
i
Profiing Local Attach
Settings
When you start this session, & list of locally started WMs is shown,
MNote that it is more efficient to run an integration wizard, It will modify the start script so that the profiling agent is
loaded at startup.
Triggers
Settings
Java File Path
; Note: the classpath & used for the bytecode viewer only.
Database EF
Settings (®) Class path x
o (O Source path @) gl
JEE&
Prabes
General Settings Cancel

Attaching to local services

The attach APl in the JVM requires that the invoking process runs as the same user as the process
that you want to attach to, so the list of JVMs that are displayed by JProfiler is limited to the
current user. Processes launched by different users are mostly services. The way to attach to
services differs for Windows and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running services.
JProfiler launches bridge executables to be able to attach to those processes no matter what
user they are running with.

18

@ IProfiler Start Center >
Start Center

Open Session Quick Attach New Session Open Snapshots

(®) On this computer () On another computer
Displayed HotSpot Ms: All detected IVMs | Show Services

D # Process Name

11132 org.gradle.launcher, daemon.bootstrap. GradleDaemon 4,5-rc-1 ~
11580 org.jetbrains. jps.cmdline.Launcher C: fUsers fingo/AppData/Local/JetBrainsToolbox /apps. ..
12060 org.gradle. launcher, daemon.bootstrap.GradleDaemon 4.5

12492 warker,org.gradle.process.internal worker, GradleWorkerMain 'Gradle Test Executor 1'

13720 org.jetbrains.idea. maven.server. RemoteMavenServer

14104 bezier.BezierAnim

14200 <unknown:

14860 org.jetbrains. kotlin. daemon. KotlinCompileDaemon —daemon-runFilesPath C:\lserslingo?. ..

6880 org.jetbrains.kotiin, daemon. KotinCompileDaemon —daemon-runFilesPath C:\Userslingol...

776 org.gradle, wrapper, GradleWrapperMain --daemon screenshats

v
Legend: Frofiling agent loaded JProfiler GUI connected Offline mode
Filter
&) HeapDump Only Start Close

On Unix-based platforms including macOS, you can execute the command line tool j penabl e
as a different user with su or sudo, depending on your Unix variant or Linux distribution. On
macOS and Debian-based Linux distributions like Ubuntu, sudo is used.
With sudo, call

sudo -u userNane jpenabl e

with su, the required command line is

su user Nane -c jpenabl e

j penabl e will let you select JVMs and tell you the port on which the profiling agent is listening.
On the Quick Attach tab of the start center, you can then select the On another computer option
and configure a direct connection to localhost and the given profiling port.

19

@ JProfiler Start Center =
Start Center

Open Session Quick Attach New Session Open Snapshots

(C) On this computer (@ On another computer

IDirect network connection to « | |192.68.2.117 Profiling port: |31775 I Default

[[] Use SOCKS proxy

If the profiling agent is not yet loaded in the target JVM, download the JProfiler archive, extract it on the remote
machine and execute

bin/jpenable
to prepare the JVM for profiling.
Take note of the assigned profiing port printed by jpenable and enter it here.

If the connection times out, check local, intermediate and remote firewalls, To drcumvent firewalls, you can set up
an 55H tunnel.

Gese

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your local
machine and the profiled JVM on another machine. For a setup where you pass the -agentpath
VM parameter to the profiled JVM, you have to install JProfiler on the remote machine and set
up a remote session on your local machine. With the remote attach functionality in JProfiler, no
such modifications are required, you just need SSH credentials to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in the
"Installing JProfiler" [p. 7] help topic and execute the contained command line tools on the
remote machine. You don't need SSH to be set up on your local machine, JProfiler ships with its
own implementation. In the most straightforward setup you just define host, user name and
authentication.

With an SSH connection, JProfiler can perform an automatic discovery of running JVMs or connect
to a specific port where a profiling agent is already listening. For the latter case, you can use
j penabl e orj pi nt egr at e on the remote machine as described above and prepare a special
JVM for profiling. Then, the SSH remote attach can be configured to directly connect to the
configured profiling port.

20

@ Edit 5SH Tunnel X

1. Tunnel mads Configure the SSH host
2. Configure SSH host
3. 55H options Jrrofiler will tunnel its connection to the profiling agent through the 55H connection configured
below.
User name: build
Host: demo
S5H port: 22 Default

Authentication: () Password

(@) Private Key |C:\sersingo),sshyd_rsa

() Discover running J¥Ms and attach to selected process o

(® Manually specify profiing part |0

Profiling port: |31775 Default

4 Back Next p Finish Cancel

Automatic discovery will list all JVMs on the remote machine that have been started as the SSH
login user. In most cases this will not be the user that has started the service that you would like
to profile. Because users that start services usually are not allowed for SSH connections, JProfiler
adds a Switch User button that lets you use sudo or su to switch to that user.

@ Attach To Running JVM x
Displayed HotSpot IVMs: Not profiled - User: root (via sudo)

D # Process Name

1040 demo_service ”~
1233 perfino_service

1332 perfino_service

1432 standalone_demo_service

v
Legend: Profiling agent loaded JProfiler GUI connected Offline mode
Filter
&) Heap Dump Only Open Cancel

In complex network topologies, you sometimes cannot connect directly to the remote machine.
In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the GUI. At the end
of the SSH tunnel you can make one direct network connection, usually to "127.0.0.1".

21

@ Edit 5SH Tunnel X

1. Tunnel mode Configure the SSH tunnel
2. Configure SSH tunnel
3. 35H options S5H tunnel steps:

55H to gateway.mycorp.com:22 [private key C:\Users\ingo\.ssh\id_rsa]
55H to demo:22 [private key C:\Users\ingo\.ssh\id_rsa]

User name:

Host:

Authentication: @ Password

(o ZAVEIN I C: \Userslingo'.sshlid_rsa

N
v
After exiting from the 35H tunnel, connect to: |127.0.0.1
(®) Discover running J¥Ms and attach to selected process 0
(O Manually specify profiling port (7]
Frofiling port: (8849 Default
4 Back Next p Finish Cancel

HPROF snapshots can only be taken for JVMs that were started with the SSH login user. This is
because HPROF snapshots require an intermediate file that is written with the access rights of
the user that has started the JVM. For security reasons, it is not possible to transfer file rights to
the SSH login user for download. No such restriction exists for full profiling sessions.

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled JVM
together with its arguments. For launchers generated by exe4j or install4j, the executable name
is displayed.

If you wish to set the displayed name yourself, for example because you have several processes
with the same main class that would otherwise be undistinguishable, you can set the VM
parameter- Oj profi | er. di spl ayName=[nare] . If the name contains spaces, use single quotes:
-Dj profiler.displayName='" My nane w th spaces' and quote the entire VM parameter
with double quotes if necessary. In addition to - Oj profil er. di spl ayNanme JProfiler also
recognizes - Dvi sual vm di spl ay. nane.

22

Recording Data

The main purpose of a profiler is to record runtime data from various sources that is useful for
solving common problems. The principal problem with this task is that a running JVM generates
such data at an enormous rate. If the profiler would always record all types of data, it would
create an unacceptable overhead or quickly use up all available memory. Also, you often want
to record data around a particular use case and not see any unrelated activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of information
that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example the
number of active threads or the number of open JDBC connections. JProfiler can sample such
values with a fixed macroscopic frequency - usually once per second - and show you the evolution
over time. In JProfiler, views that show such data are called telemetries [p. 41] . Most telemetries
are always recorded because the overhead of the measurement and the memory consumption
are small. If data is recorded for a long time, older data points are consolidated so that memory
consumption does not grow linearly with time.

’ Telemetries 0:10 0:20 0:30 0:40 0:50
A
Overview 50 T T T
] | | |
Memory i | | |
] | | |
Recorded Objects 40 | | | [
Recorded Throughput B
GC Activity T
30
Classes]
ToEEis g 0:17.0 [ul 21, 2017 3:23:37 PM]
20
CPU Load 4 == Runnable threads: 1
1 < mm Blocked threads: 7
12] — Threads in Net If0: 2
10 = \Waiting threads: 4
‘i:l‘ Live memory B (d = Total number of threads: 14
E i _‘ L-L
'ﬁ Heap Walker @
< >
] == Runnable threads: 0 =W Blocked threads: 0 ™ Threads in Net1/0: 9 == Waiting threads: » /Q |- -|

-

There are also parametrized telemetries, such as the number of instances for each class. The
extra dimension makes a permanent chronological recording unsustainable. You can tell JProfiler
to record telemetries of the instance counts of a number of selected classes, but not of each
and every class.

23

=
""l' Live memory Objects: All objects

Show: G]ava.awt.geam.GeneraIPam i |+ x
All Objects
e
Recorded Objects 1:00 Lo 20 130 140
&
Allocation Call Tree
5,000
Allocation Hot Spots]
Class Tracker 4,000
.]
'ﬁ Heap Walker 1
3,000
I CPU views p
2,000 [
—] i 1:08.1 [Jul 21, 2017 5:22:14 PM]
Threads g L] m Class java.awt.geom. GeneralPath: 1,475
1,000
] T T
N o 1 TINA | \
1 Monitors & locks] | [
] | I
| |
< >
; Databases
= Class java.awt.geom. GeneralPath: 4,439 22k

=

To continue the previous example, JProfiler is able to show you the instance counts of all classes,
but without the chronological information. This is the "All objects" view and it shows each class
as arow in a table. The frequency for updating the view is lower than once per second and may
be adjusted automatically depending on how much overhead the measurement causes.
Determining the instance counts of all classes is relatively expensive and takes longer the more
objects are on the heap. JProfiler limits the update frequency of the "All objects" view so that the
overhead of the measurement never exceeds 10% over time in extreme cases. You can freeze
the views to temporarily stop recording. Also, if the view is not active, data will not be recorded
and there is no associated overhead.

Aggregation level: @ Classes ~
' Telemetries
Name Instance Count w Size
java.awt.Rectangle [EE 1,608 kB
-i:l- Live memory java.util.HashMap$hode I 7,540 1,201kB
java.security. AccessControlContext [[EEER 1,338 kB
Al Objects sun.javaz2d. pipe.Region [kRS 956 kB
java.awt.geom. AffineTransform [Rk 1,506 kB
Recorded Objects char[] I 17,528 1,062 kB
float(] I 1,145 1,225kB
Allocation Call Tree sun.java2d.d3d.D3D5urfaceDatasD3... [N 15,522 312kB
int[] I 15,243 30,237 kB
Allocation Hot Spots java.lang. String I G193 315kB
sun.java2d. SunGraphics2D I 12937 2,794 kB
Class Tracker X
java.lang. Integer I 12,570 201kB
a java.lang.ref.WeakReference I 12 153 388 kB
'ﬂ Heap Walker sun.java2d.StateTrackableDelegatest [N 11,745 187kB
java.lang. Object]] [ERER 412 kB
sun.awt.EventQueusltem . ;777 210kB
I CPU views java.awt.EventQuenes3 I G215 197 kB
java.util. ArrayList I 7054 191kB
java.util,HashMap I 7225 380 kB
b= Threads java.util. IdentityHashMapskeylterator [N 7,763 310kB
o java.awt.event InvocationEvent I .72 494kB w
n Totak 479,597 50,151kB
1 IIIER RS Class View Filters v | @

-

Some measurements capture enum-like values, such as the execution status a thread is currently
in. This kind of measurement can be displayed as a colored time line and consumes a lot less
memory than numerical telemetries. In the cases of thread statuses, the "Thread history" view
shows the time lines for all threads in the JVM. Just like for the telemetries with numeric values,
older values are consolidated and made more coarse-grained to reduce memory consumption.

24

-

. Show usages: | Both alive and dead -~ Filter ~
'ﬁ Heap Walker
Threads

Timer-0 [main]
I CPU views AWT-EventQueue-0 [main]

I
0:10 0:20 0:30
| | |

| |
‘ ‘ n
) R | |
SwingWaorker-pool-3-thread-1 [main

Thread History main [main] *

Image Fetcher 0 [main]

|
(I | 1
Image Fetcher 0 [main] ‘

= .
Threads jprofiler_ius [main] |

e Timer-1 [main]
Thread Dumps Thread-9 [main] 1 -
Compiler Processing Task [main] |
Monitors & locks Compiler Processing Task [main] |

Image Fetcher 0 [main]

; Databases

JEE & Probes

< >

[
Tagy Mbeans = Runnable = Waiting B Blocked ™ Net1/O 22 [

=

Allocation recording

If you are interested in instance counts that have been allocated during a certain time interval,
JProfiler has to track all allocations. Contrary to the "All objects" view where JProfiler can iterate
over all objects in the heap to get information on demand, tracking single allocations requires
that additional code has to be executed for each object allocation. That makes it a very expensive
measurement that can significantly change the runtime characteristics of the profiled application,
such as the performance hot spots, especially if you allocate many objects. This is why allocation
recording has to be started and stopped explicitly.

Views that have an associated recording initially show an empty page with a recording button.
The same recording button is also found in the toolbar.

” Telemetries Press to record allocation data
-l:l Live memory
]

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker
o
'ﬁ Heap Walker

I CPU views

Threads

[
r? Moritors & locks

-

Allocation recording not only records the number of allocated instances, it also records the
allocation stack traces. Keeping stack traces for each allocated recording in memory would create
excessive overhead, so JProfiler cumulates recorded stack traces into a tree. This also has the
advantage that you can interpret the data much more easily. However, the chronological aspect
is lost and there is no way to extract certain time ranges from the data.

25

Recorded allocations of: | Live objects at 00:09, java.lang.String Change
Telemetries

'ﬂ' Live memary
]

Aggregation level: () Methods ~ | View mode: | = Tree “

120
- 107 kB - 4,485 alloc, called from call site #3 (remote VM #1)
i .5% - 107 kB - 4,485 alloc. com.ejt.demo.server.handlers. RmiHandlerImpl. remoteOperation
(=57 ™ 21,5% - 107 kB - 4,485 alloc. com.ejt.demo.server.handlers.RmiHandlerImpl. performitark

All Objects - MA"- 21.5% - 107 kB - 4,435 alloc. com.ejt.demo.server.handlers. RmiHandlerImpl.makeWebser
) \é)- 21,5% - 107 kB - 4,485 aloc., com.ejt.demo.server . handlers,HandlerHelper.makeWebs
Recorded Objects @ 15.1% - 75,744 bytes - 3,156 alloc. java.lang. ThreadLocal.get
==

\.:1) W 15.1% - 75,744 bytes - 3,156 alloc. com.ejt.demo. server. handlers. HandlerHelp
E1-() W 15, 1% - 75,744 bytes - 3,156 alloc. com.ejt.demo.server.handlers.Handler|
= () W 11.7% - 58,488 bytes - 2,437 alloc. com.ejt.demo. server.handlers.WsH
B- @' 11.7% - 58,488 bytes - 2,437 alloc, javax.xml.ws.Service, getPort
0,0% - 120 bytes - 5 alloc, com,sun.proxy, SProxy37.value

Allocation Call Tree

Allocation Hot Spots

Class Tracker 0,0% - 120 bytes - 5 alloc, com,sun.proxy, SProxy47.value
H 0.0% - 72 bytes - 3 alloc. com.sun.proxy. $Proxy39./lax
E} ,d)l 3.4% - 17,256 bytes - 719 alloc. com.ejt.demo.server handlers. WsHand!
b Heap Walker 5 1 3.4% - 17,256 bytes - 719 alloc, javax. xml.ws.Service, <init> 0

_ E 165,49% - 31,896 bytes - 1,329 alloc. com.ejt.demo.server.handlers.\WsHandler .getExchan(
=+ . 20.9% - 104KE - 4,362 alloc, called from call site #1 {remote VM #1)
I CPU views =8 ’4‘)‘5’- 20.9% - 104 kE - 4,362 alloc. com.ejt.demo.server.handlers. RmiHandlerImpl.remoteCperation
= Wj“!. 20.9% - 104 kB - 4,362 alloc. com.ejt.demo. server. handlers.RmiHandlerImpl. performtork
= ’“A"'- 20,9% - 104 kB - 4,362 alloc. com.ejt.demo,server.handlers.RmiHandlerImpl.makewebser
= \é)- 20.9% - 104 kB - 4,362 alloc. com.ejt.demo.server.handlers,HandlerHelper.makeWebs

e
Threads =X J W 13,3% - 65,528 bytes - 2,772 alloc. java.lang. ThreadLocal get
B | =)W 13.3% - 66,528 bytes - 2,772 alloc. com.ejt.demo.server.handlers. HandlerHelp v
N ‘ ’
1 ITEEHEES Call Tree View Filters ~ | @

=

Memory analysis

Allocation recording can only measure where objects are allocated and has no information on
the references between objects. Any memory analysis that requires references, such as solving
amemory leak, is done in the heap walker. The heap walker takes a snapshot of the entire heap
and analyzes it. This is an invasive operation that pauses the JVM - potentially for a long time -
and requires a large amount of memory.

A more lightweight operation is marking all object on the heap before you start a use case, so
that you can find all newly allocated objects when you take a heap snapshot later on.

The JVM has a special trigger for dumping the entire heap to a file that is named after the old
HPROF profiling agent. This is not related to the profiling interface and does not operate under
its constraints. For this reason, the HPROF heap dump is faster and uses less resources. The
downside is that you will not have a live connection to the JVM when viewing the heap snapshot
in the heap walker and that some features are not available.

” Telemetries @ No snapshot has been taken.

For a maximum of features:

Live memory
Press to take a JProfiler heap snapshot
Heap Walker , The snapshot is displayed in this frame and saved together with profiing information from other
views
« For live profiling sessions, special features are available
CPU views » Integrations with other views require this snapshot type

Threads Press * to indicate the starting point of a use case

« All objects that are currently on the heap will be marked as old
Monitors & locks » When you take the next heap snapshot, new and old objects will be listed separately in the header
‘You can select new or old objects only, making it easy to track down memory leaks

Databases
For a minimum of overhead:

JEE & Probes Press tD take an HPROF heap snapshot

» The snapshot is saved separately and displayed in another frame

© W D lulmpg B

Y
L1

My MBeans « Mot all features are available

-

Method call recording

Measuring how long method calls take is an optional recording, just like allocation recording.
Method calls are cumulated into a tree and there are various views that show the recorded data

26

from different perspectives, such as a call graph. The recording for this type of data is called
"CPU recording" in JProfiler.

-

b Heap Walker Thread selection: . All thread groups Aggregation level: 0 Methods
Thread status: | BB Runnable
I CPU views a = ~
n
Call Tree x 104
Hot Spots = —_—
- /
/ o lpers
Call Graph / Veu o
| /
o G669 m
Method Statistics }3 .ffj/ e
Bt vl = 2| pestHandier g c.£.d.s.handlers.RequestHandler / - lpersi
CallTr all > executepaluery >
al Tracer S self, 2 inv. 698 ms, 562 ys self, 1 inv. 1,276}
JavaScript ¥HR =l \
— Y
Threads ‘) \\
c
r? Monitors & locks /O
A
“ ¥
; Databases < >

Under particular circumstances it may be useful to see the chronological sequence of method
calls, especially if multiple threads are involved. For these special cases, JProfiler offers the "Call
tracer" view. That view has a separate recording type that is not tied to the more general CPU
recording. Note that the call tracer produces too much data to be useful for solving performance
problems, it is only intended for a specialized form of debugging.

2626 traces, 0 hidden elements
Tel uyl =
' Semeties - I RMI TCP Connection(4)-192, 168.218.1 (6 traces) +0ps A~
El java.util.concurrent {1 trace) +0ps
-‘:' Live memory = o java.util.concurrent, ThreadPoolExecutor §Worker {1 trace) +0ps
. : @ run{) +0ps
=] com,ejt.dema.server.handlers (4 traces) +0ps
b Heap Walker 0 com.ejt.demo. server. handlers.RmiHandlerImpl (3 traces) +0ps
@ remoteOperation() +0ps
(R performWaork() +0ps
I CPU views T makeWebServiceCalls()
(- com.ejt.demo.server.handlers HandlerHelper {1 trace) +0ps
Call Tree B2 com.sun.proxy (1 trace) +0ps
- : pool-1-thread-4 (3 traces) + 2 ms 230 ps
SEEEE - T RMI TCP Connection(3)-192, 168,218, 1 {6 traces) +11 ms 943 ps
call Graph ; pool-1-thread-2 (3 traces) + 14 ms 46 ps
[+ T RMI TCP Connection(2]- 68.218 4 trace 57
Method Statistics com, ejt.demo. server, handlers, RmiHandlerImpl, performWark()
A S com, ejt.demo. server, handlers, RmiHandlerImpl.remoteOperation()
ompiexity Analysis java.util.concurrent, ThreadPoolExecutor SWorker . run{)
Call Tracer
Javascript XHR
—
Threads

-

Another view that analyzes method calls is the "Method statistics" view. It introduces another
axis of measurement and records a histogram of execution times for each method. Unless you
are interested in investigating if there are outliers in the execution times of certain methods,
you don't need this data and its recording would create unacceptable overhead. So there is a
separate recording for method statistics that you have to switch on in the associated view.

27

Thread status: (e All states

’ Telemetries

Total Time Inv. » Avg. Time Median Time Min. Time: Max. Time Std. ... 0 Outlier ¢
1,755ms| 22| 79,785] 78,400 ps| 54,110ps] 102ms| 14,965ps] [P
":l' Live memory . gj 1,670 ms 22 75,925 76,175ps 50,430 ps 97,908 ps 14,728 ps
X 1,670 ms 22 75,921ps 76,175 ps 50,473 ps 97,903 ps 14,728 ps
called fr 885 mg 12 73,820ps 77, 700ps 52,217 ps 97,185ps 15,204 ps
b Heap Walker com. ejt.... 1,678 ms 7 238 ms 245ms 180 ms 267ms 28,470 ps
com.ejt.... 1,166 ms 4 291ms 255 ms 6 us 484 ms 188 ms
com. gjt.... 3,158 ms 3 1,053 ms 825 ms 825 ms 1,185ms 161 ms
I CPU views com.ejt. ... 3,156 ms 3 1,052 ms 324 ms 324 ms 1,184 ms 161 ms
com.ejt.... 3,156 ms 3 1,052 ms 824ms 824ms 1,184ms 161ms
com. gjt.... 2,318 ms 3 773 ms 687 ms 687 ms 87ims 75,72Bps w
Call Tree
Hot Spots Class View Filters ~ @
T T T T T T T I
Call Graph 100m
A
Method Statistics =
=
g 10
Complexity Analysis 2]
S 1
Call Tracer g 14
s !
£]
JavaScript XHR]
B rheads Call duration BB (%O

=

Both call tracer and method statistics depend on CPU recording and automatically switch it on

if necessary.

Another specialized view that has its own recording is the "Complexity analysis". It only measures
the execution times of selected methods and does not require CPU recording to be enabled. Its
additional data axis is a numeric value for the algorithmic complexity of a method call that you
can calculate with a script. In this way, you can measure how the execution time of a method

depends on its parameters.

v Telemetries
-I’ -I Live memory
. 30
h Heap Walker
254
I CPU views
20

Call Tree

Curve fits:

Time in ms

Hot Spots

Call Graph

Method Statistics
Complexity Analysis

Call Tracer . -

Javascript XHR

Quadratic (°=0.59%) [best fit]

Complexity recording: 0 sort.Comparison.executeBubbleSort{int[], int)

Threads

-

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be recorded.
The rate of such events varies greatly. For a multi-threaded program where threads frequently
coordinate tasks or share common resources, there can be an enormous amount of such events.

T
3,000

Complexity

This is why such chronological data is not recorded by default.

When you switch on monitor recording, the "Locking history graph" and the "Monitor history"

view will start to show data.

28

T
4,000

T
5,000

-

CPU views curentevent: | | | || 3 || 3| 2/ 190 [to:11177.927]
Eventofinterest: || | € | » | B nonodes ofinterest have been marked Recording thresholds: 1,000 ps bloc
Threads ~

Monitors & locks i
Thread-2 [main] -------- | Class: hezier.BezierAnim§Demo

Current Locking Graph Monitor |d: 6

Current Monitors

AWT-EventQueue-0 [main] Class: java.lang. Ohject
Locking History Graph |
| ristery Bram Wonitor Ig: 5
Monitor History
Manitor Usage Statistics w
|
0:10 0:20 0:30 0:40 0:50
; Databases
-] H ‘ “ ‘ H ‘ “ H “ ‘ H “ ‘ “ ‘ H ‘ “ ‘ ‘ ‘ ‘ H ‘ ‘ “ H
Ll
{% MBeans
L = Event B Eventinvolving nodes ofinterest = Currently displayed event Click and dri /Q

To eliminate noise and reduce memory consumption, very short events are not recorded. The
view settings give you the possibility to adjust these thresholds.

€ Monitor History Graph View Settings X

Recording Thresholds
Manitor blocking threshold: 1,000 5 ps
Manitor waiting threshold: 100,000 5| ps

All events with a duration that is lower than the configured
threshold will be discarded.

Warning: If you lower the threshalds, more data will be

recorded, Please note that the assodated memory
overhead grows linearly in time.

o

Probe recording

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By default,
no probes are recorded and you can toggle recording separately for each probe. Some probes
will add very little or no overhead and some will create a considerable amount of data, depending
on what your application is doing and how the probes are configured.

29

@ Demo server - JProfiler - O >
Session View Profiling Window Help
— by —
@ HZ £ 8 4% L5 0
Start Save Session Start Stop Change Add i Stop Probe
Gonter TP Snapshor Setings | Recordings Recordngs Tracking | "9 Bockmark | B cewings | 2P |7 mec
on Profiing <fic
~
CPU views i i JDBC
I Gl Time Line E Connections o call T IDBC connactons snd exsnstion of Statments
—
Threads Show physical connections: | Both open and dosed Filter w
-_ | O L O O I
Connections 0:10 0:20 0:30
. | |
r? Monitors & locks jdbc:demo: ffremote_hostjtest [ID 1] 1 (N} | 11
jdbc:demo: ffremote_host/ftest [1D 2] m [| +l |
jdbc:demo: ffremote_hosttest [10 3] 1 | |
; Dalabases jdbc:demo: ffremote_host/ftest [1D <] I IEN |
jdbc:demo: ffremote_hosttest [ID 5] mE +I |
JDBC
jdbc:demo: ffremote_host/ftest [0 &] 1} | 11 | 11
JPAfHibernate jdbc:demo: ffremote_host/test [ID 7] n | |
jdbe:demo: ffremote_host/ftest [ID 5] 1
MongoDE . |
jdbcidema: ffremote_host/ftest [1D 9] [|| [1] NN
Cassandra jdbc:demo: ffremote_hostftest [10 1] HE HIN | i
: : 1 L]
- jdbcidemo: ffremote_hostjtest 1D 11]
o JEE &Probes
ﬂ MBeans
w = Idle M= Statementexecution N Prepared statement execution N Batch execution SI® |4
T @ 3activerecordings | %) Auto-update 25 VM #1 00:24 & Profiing

Just like allocation recording and method call recording, probe data is cumulated and chronological
information is discarded except for time lines and telemetries. However, most probes also have
an "Events" view that allows you to inspect the single events. This adds a potentially large overhead
and has a separate recording action. The status of that the recording action is persistent, so that
when you toggle probe recording, the associated event recording is toggled as well if you have
switched it on previously.

@ Demo server - JProfiler - O >
Session View Profiling Window Help
-3 o 1+ BB 9
@O HZ £ 83 6% @ |5 3
Start Save Session Start Stop Change Add Wiaws Stop Probe Stop Freeze Contral
Canter TP Snapshor Setings | Recordings Recordngs Tracking | "9 Bockmark | BP0 cnings | TP DBC Events | Wiew Object
Session Prafiling Vizw specfic
-
I CPU views 4nection Leaks B Telemetries Events [} JDBC
JDBC connections and exscution of statemants
Threads Show events: | All types - Filter w
—
Start Time « Event Type Duration Connection ID Description Thread
ﬁ Monitors & locks 0:01.622 [1... 3 Connectio... Ops1 jdbc:demo: ffremote_host... Servletreque... &
i [Frepareds | iomai
[Connectio... Ops2 jdbcidemo: ffremote_host... RMI TCP Conn,..
Databases = Statement... 724ms 2 SELECT i.id, i.availability, ... RMI TCP Conn...
78,153ps 1 INSERT INTQ CUSTOMER... Servietregue. ..
59,883 ps 1 INSERT INTQ ORDER (ID... Servletreque...
JDBC mm Prepareds... 78,010ps 1 INSERT INTO ORDER_CU... Servletregue...
3 Connectio... Ops3 jdbc:demo: ffremote_host... Serviet reque...
PAfHbernate mm Prepareds. .. 104ms 3 SELECT *FROM ORDER ... Servietreque...
x 73 1 Connectio... Ops4 jdbc:demo: ffremote_host... RMI TCP Conn...
T B Statement... 931ms 4 SELECT i.id, i.availabity, ... RMI TCP Corn... ,
Cassandra = i s,iéi = = ==
HBase
javax.persistence, TypedQuery. getResultList{) -
o com. ejt.demo. server, handlers, RequestHandler .executepaQuery(javax. persistence, EntityManager)
rones com, ejt.demo, server, handlers, RequestHandler . makeJpacall()
com. ejt.demo. server. handlers. RequestHandler .performiork()
F T com. ejt.demo. server. handlers. RequestHandler.run()
wr HTTP: fdemo/fview1 (line: 1) v
T @ 3activerecordings | %) Auto-update 25 VM #1 00:08 & Profiing

The JDBC probe has a third recording action for recording JDBC connection leaks. The associated
overhead with looking for connection leaks is only incurred if you are actually trying to investigate

30

such a problem. Just like the event recording action, the selection state of the leak recording
action is persistent.

@ IDBC demo - JProfiler

- O >
Session View Profiling Window Help
@ HZ £ 8 T 0% tH O @3
Start Save Seszion Stan Stop Statt Add i Stop Probe Stop Freeze
Canter TP Snapshor Setings | Recordings Recordngs Tracking | "9 pockmark | B conings | TR DBC [eaks | Wiew
Session Prafiling View specific
) . ~ pBC [
- Telemetries 4:all Tree I\, Hot Spots i ConnectionLeaks » DB onnamsons and s of svatomers |
This view shows all virtual connections that have been open for more than 10 seconds, Virtual connections are what
‘ Live memory you get from connection pools and block a physical connection until they are dosed.
Connections of type "Undosed collected” are definite leaks while "Undosed” connections are strong candidates.
i Heap Walker
Show virtual connections: | All types + | | O~ Filter -
Opened At = Open Since Type Description Thread Class Name
CPU views 5 ;
14,033 ms| Undos... fidbc:hsgldb:hsql:/flocalhost. .. [pool-1-thread. .. [com.sun.proxy....
0:12.728 [Ja... 7,303 ms B Undlos... jdbc:hsgldb:hsql:fflocalhost... pool-1-thread... com.sun.proxy....
—
- Threads
o
r? Monitors & locks
Databases Stack trace:
javax.sql.DataSource.getConnection()
5T jdbc. JdbcTestwarker. call()
jdbc. JdbcTestwarker, call)
JPAHibernate java.util.concurrent. ThreadPoolExecutor $Worker. run()
MongeDB
=

VM #1 00:21

| + | @ 3active recordings ‘) Auto-update 25 | & Profiing

Recording profiles

In many situations, you want to start or stop various recordings together with a single click. It
would be impractical to visit all the corresponding views and toggle the recording buttons one
by one. This is why JProfiler has recording profiles. Recording profiles can be created by clicking
on the Start Recordings button in the tool bar.

@ Demo server - JProfiler - O >
Session View Profiling Window Help
_— iy — —

O H2Z(R2|8 P % L& 09 E OO
Start Save Session Start Stop Change Add Wiaw Show Stop 3|
Ceter =P Snapshor Settings |Recordings [Recordings Tracking | FU"C Bockmark | FP Satings | TP legens | cpU | B3k Fowerd g

= [JDBC and INDI Lo
W] Allocations ~ | Aggregation level: OMethcds w
‘ Live memory - - =
Configure Recording Profiles I ~ | View mode: = Tree ~
Save Current Recerdings As Profile jt.demo.server.DemoServers3.run
i Heap Walker AL e Y 5 - LU0 mE - Zinv. Java.utl. concurrent. ThreadPoalExecutor §iorker. run
=-44) W 12,2% - 416 ms - 1inv. com.ejt.demo.server gui. GuiDemoServer§1$1.run
=3 0 0.0% -89 ps - Linv, com.ejt.demo.server.handlers, WsHandlerImpl, <dinit>
. 0.0% - 29 ps - 1inv. java.lang.Integer.getinteger
CPU views 0.0% - 4 ps - 1inv. java.lang. Integer.intValue
Call Tree
Hot Spots
Call Graph
Method Statistics
Complexity Analysis
Call Tracer
JavaScript XHR
—
|+ Threads
[
(& s R Qu- Call Tree View Filters ~ @
-
| T | @ 3active recordings ‘) Auto-update 55 VM #1 00:08 | & Profiing

31

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create by the
selected recordings and tries to discourage problematic combinations. In particular, allocation
recording and CPU recording do not go well together because the timings of CPU data will be
heavily distorted by allocation recording.

@ Configure Recording Profiles x

Configured recording profiles:

%) Allocations
o Allocations .

CPU data |] |]
tion call stacks [l Monitor recording [l Complexity data
W Custom prob:
Record datab

Record built-in pr:

<[>

Cancel

0 Hep

You can activate recording profiles at any time while a session is running. Recording profiles are
not additive, they stop all recordings that are not included in the recording profile. With the Stop
Recordings button you stop all recordings no matter how they have been activated. To check
what recordings are currently active, hover the mouse over the recordings label in the status
bar.

Hot Spots
Call Graph
Method Statistics
Complexity Analysis
The following data is being recorded:
Call Tracer
B crudata
JavaScript XHR E JDBC
w JNDI
| Threads
— You can stert and stop recording with view-speciic
tool bar buttons or recording profiles.
n Manitrre & lnre ~| @
nrifrs & lnries g \f
| + | @ 3active recordings ‘) Auto-update 55 | VM #1 ‘ 00:09 | & Profiing

A recording profile can also be activated directly when you start profiling. The "Session startup"
dialog has an Initial recording profile drop-down. By default, no recording profile is selected, but
if you need data from the startup phase of the JVM, this is the place to configure the required
recordings.

32

@ Session Startup x
Settings
Profiing settings: | Template: Instrumentation, al fesiures supporied Edit
D) For low-overhead CPU profiing, switch to sampling,
Filter settings: 1 filter rule for method call recording, 1 exceptional method Edit
o Profiled packages have been defined. If the overhead is too high, make your fiters more
specific or svitch to sampling,
Trigger settings: Mo active triggers Edit
Database settings: | 5 enabled datsbases Edit
Probe settings: 10 enabled built-in probes Edit
Startup And Exit
Initial recording profile: IJDBC and JNDI v I Configure
1¥M exit action: Let the VM exit and disconnect ~ | More -
Performance
Overhead: | I
Tha ouerhezad is composed of the sslacted profiling ssttings and the sslectad recording profile,
Cancel

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has a
system for defining triggers [p. 108] that execute a list of actions. The available trigger actions
also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed. In
that case, you would go to the session settings dialog, activate the Trigger Settings tab and define
a method trigger for that method. For the action configuration, you have a number of different
recording actions available.

@) Choose an Action X

Available actions:

= Record profiing data A
- |@] Start recording
- {gd Stop recording
- Start call tracer
- & Stop call tracer
ity Start monitor recording

- | g Stop monitor recording
- Trigger heap dump

g Mark heap
- [Trigger thread dump
=4 Record probe data

e‘ Start probe recording
{2 Stop probe recording
m Start probe tracking

E Stop probe tracking

Save snapshots to disk
i H Save snapshot
E li"l Create an HPROF heap dump
Action execution
ﬁ Wait for the event to finish
H " Claan
Type into the tree to start quicksearch
Description

OK

The "Start recording" action controls those recordings without any parameters. Usually, when
you stop and re-start a recording, all previously recorded data is cleared. For the "CPU data" and
"Allocation data" recordings, you also have the option to keep the previous data and continue
cumulating across multiple intervals.

33

@ Trigger Wizard - Method invocation X

1. Trigger type Configure actions for this trigger
2. Spedify methods
3. Actions Configured actions:
4, Description o
Start record
5. Group U rt recording
6. Finished

W Allocation data | |
W Thread data

W VM telemetry data
Il Method 5

M Complexity analysis

<>

4 Back Finish Cancel

Method triggers can be added conveniently in the call tree by using the "Add method trigger"
action in the context menu. If you already have a method trigger in the same session, you can
choose to add a method interception to an existing trigger.

Thread selection: . All thread groups ~ | Aggregation level: @ Methods w

Thread status: = Runnable ~ | View mode: = Tree w

[1) N 58, 1% - 11,446 ms - 8 inv. java.util.concurrent. ThreadPoolExecutor $Worker.run
[=E W 33,9% - 7,857 ms - 7inv. com.ejt.dema.zerver. DemoServer§3.run

-G W 13.3% - 2,618 ms - 3 inv. HTTP: /demo/fviewd
17.1% - 1,907 ms - 2inv. HTTP: fdemojviews
-G 4.9% - 962 ms - Linv. HTTP: fdemo/fview3
[(W1 4.6% - 311 ms - 5inv. com.ejt.demo.server.handlers. JdbcJobHandler .run
[+ 4.5% - 891 ms - 2inv. HTTP: /demo/view1
G- 3.6% - 718 ms - 1inv, HTTP: jdemoview2
g
= #5 Show Call Graph er.handleMessage
andler. perfarmWork
Add Method Trigger et ancier makeamicat
@ Addas Exceptional Method sHandler . makeWebServiceCall
| X msType, <clinit>
=g Split Method with a Script sType. values
[] Intercept Method With Script Probe r.<clinit>
Type.getDestination
>+ Merge splitting level Chrl+Ales M Type.getDuration
un
5= Remove Selected Sub-Tree Delete
;= Restore Removed Sub-Trees Ctrl+Alt+S
W Add Filter From Selection »
@ Show Tree Legend
o Show Node Details Ctrl+Alt+| ~|@

By default, triggers are active when the JVM is started for profiling. There are two ways to disable
triggers at startup: You can disable them individually in the trigger configuration or deselect the
Enable triggers on startup check box in the session startup dialog. During a live session, you can
enable or disable all triggers by choosing Profiling->(Enable | Disable) Triggers from the menu or

clicking on the " trigger recording state icon in the status bar.

JavaScript XHR

. Threads Q- Call Tree View Filters
-

‘ TD | @ 3 active recordings |) Auto-update 5¢

Sometimes, you need to toggle trigger activation for groups of triggers at the same time. This is
possible by assigning the same group ID to the triggers of interest and invoking Profiling->Enable
Triggers Groups from the menu.

34

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is already
being profiled. jpcontroller requires that the JProfiler MBean is published, otherwise it will not
be able to connect to the profiled JVM. This is only the case if the profiling agent has already
received profiling settings. Without profiling settings, the agent would not know what to record
exactly.

One of the following conditions has to apply:

* You have already connected to the JVM with a JProfiler GUI

+ The profiled JVM was started with an - agent pat h VM parameter that included both the
nowai t andthe confi g parameters. In the integration wizards, this corresponds to the Startup
immediately mode and the Apply configuration at startup option in the Config synchronization
step.

+ The VM was prepared for profiling with the j penabl e executable and the - of f | i ne parameter
was specified. See the output of j penabl e - hel p for more information.

Specifically, j pcont r ol | er will not work if the profiled JVM was started only with the nowai t
flag. In the integration wizards, the Apply configuration when connecting with the JProfiler GUI option
on the Config synchronization step would configure such a parameter.

jpcontroller presents you with a looping multi-level menu for all recordings and their parameters.
You can also save snapshots with it.

@S @ ingo@ubuntu: ~

ingo@ubuntu:~$ sudo -u tomcat8 jprofiler1@0/bin/jpcontroller
Connecting to org.apache.catalina.startup.Bootstrap start [6125] ...
Starting JMX management agent ...

Connection established successfully.

Please select an operation:

Start recording [1]
Stop recording [2]

Enable triggers [3]
Disable triggers [4]

Add bookmark [7]
Save snapshot [8]
Quit [9]

|

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the com

jprofiler.api.controller.Controll er classtostartand stop recordings programmatically.
See the chapter on offline profiling [p. 108] for more information and for how to get the artifact
that includes the controller class.

If you want to control recordings in a different JVM, you can access the same MBean in the profiled
JVM that is also used by j pcontrol | er. Setting up programmatic usage of the MBean is
somewhat involved and requires quite a bit of ceremony, so JProfiler ships with an example that
you can reuse. Check the file api / sanpl es/ nbean/ sr c/ MBeanPr ogr anmat i cAccessExanpl e.
j ava. It records CPU data for 5 seconds in another profiled JVM and saves a snapshot to disk.

35

Snapshots

Until now, we have only looked at live sessions where the JProfiler GUI obtains the data from the
profiling agent that is running inside the profiled JVM. JProfiler also supports snapshots where
all profiling data is written to a file. This can be of advantage in several scenarios:

* You record profiling data automatically, for example as part of a test so that connecting with
a JProfiler GUI is not possible.

+ You want to compare profiling data from different profiling sessions or look at older recordings.

* You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain uncompressed to
allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot tool bar
button. JProfiler pulls all profiling data from the remote agent and saves it to a local file with a
".jps" extension. You can save multiple such snapshots during the course of a live session. They
are not opened automatically and you can continue to profile.

@ Animated Bezier Curve Demo - JProfiler

Session View Profiling Window Help

¥ @(H|Z 8

Start Save | Session Start
Center Snapshot | Settings

’ Telemetries
Live memor
g ererer

£
St0p Stop

1, Hot Spots

Thread status:

b N,

= (> L3
Start
Recordings Recordings Tracking

Profiling

j_:‘v I /Lr — J % r;u
Stop Probe Showe
Servlets Legend

Add Wiew
FUnGC poskmark | EPYY Sottings | HOP

M Telemetries Events B Tracker

Thread selection: | i All thread groups

mm Al states

=g

ol
dd To
Tracker

Serviets
URL from servlet and ISP invocstions

« | Aggregation level: () Methods ~

~

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you can
conveniently open a snapshot that you have just saved. When opening a snapshot while the live
session is still running, you have a choice of terminating the live session or opening another

JProfiler window.

@ Iprofiler

The Current Window Is In Use

How do you wish to proceed?

% Open a new window

% Use this window

If you select this option, the currently active profiling session
will be stepped.

Cancel

When you use the snapshot comparison feature in JProfiler, the list of snapshots is populated
with all the the snapshots that you have saved for the current live session. This makes it easy to

compare different use cases.

36

T Snapshot comparison - JProfiler - m} x
File View Window Help

N w N N . r :
A4 1 ® e |[& i O
Memory CPU Telemetry Probe Stant Wiew
: : : Canter | EPU clypg; Hele
Available Snapshots |+]
testl.jps
2018-01-29 15:15:35
test2.jps
2013-01-29 15:15:37
test3.jps @ Please select snapshots on the left and create a comparison

2013-01-29 15:15:33

In general, you can open snapshots by invoking Session->Open Snapshot from the main menu or
by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations also support
opening JProfiler snapshots through the generic Open File actions in the IDEs themselves. In that
case, you get source code navigation into the IDE instead of the built-in source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with recorded
data are available. To discover what kind of data has been recorded, hover the mouse over the
recording label in the status bar.

Call Graph
Method Statistics
Complexity Analysis
Call Tracer
JavaScript ¥HR.
—
Threads
—
r;‘ Monitors & locks The following data has been recorded:
B crudata
; Databases |8 Method statistics
@ serviets
@ pec
o JEE &Probes
Only views related to these recordings are available.
. Call Tree View Filters | i@
-
T @ 4recordings Jan 29, 20138 3:15:35PM WM #1 00:09 H Snapshot

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. So when the profiled
JVM is terminated, the profiling session in JProfiler is closed as well. To continue profiling when
a JVM exits, you have two options, both of which can be activated in the session startup dialog.

37

@ Session Startup x

Settings
Profiing settings: | Template: Instrumentation, al fesiures supporied Edit
D) For low-overhead CPU profiing, switch to sampling,
Filter settings: 1 filter rule for method call recording Edit

@ Profiled packages have been defined, If the overhead is too high, make your fiters more
specific or svitch to sampling,

Trigger settings: Mo active triggers Edit

Database settings: | 5 enabled datsbases Edit

Probe settings: 10 enabled built-in probes Edit
Startup And Exit

Initial recording profile: | [no recordings] v Configure

JVM exit action: Let the JVM exit and disconnect + | More -

Let the JVM exit and disconnect
Keep the VM alive for profiling
Save and immediately open a snapshot

Performance

Overhead:
The overhead is composed of the sslected profiling settings and the sslected recording profils.

==

* You can prevent the JVM from actually exiting and keep it artificially alive as long as the JProfiler
GUIl is connected. This may be undesirable when you are profiling a test case from the IDE
and want to see the status and total time in the test console of the IDE.

* You can ask JProfiler to save a snapshot when the JVM terminates and switch to itimmediately.
The snapshot is temporary and will be discarded when you close the session unless you use
the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of snapshots.
In triggers, you can add a "Save a snapshot" action that saves the snapshot on the machine
where the profiled JVM is running. When the trigger runs during a live session, the snapshot is
also saved on the remote machine and may not include parts of the data that have already been
transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

+ For test cases, start recording in the "JVM startup" trigger and add a "JVM exit" trigger to save
the snapshot when the JVM is terminated.

+ For exceptional conditions like the "CPU load threshold" trigger or for periodic profiling with
a"Timer trigger", save the snapshot after recording some data with a "Sleep" action in between.

38

@ Trigger Wizard - CPU load threshold X
1. Trigger type Configure actions for this trigger
2. Threshold
3. Actions Configured actions:
4, Description
Start recordin
5. Group ID @ g +
6. Finished _L Slesp x
@ Stop recording
: snapshot
Add a unique number to the snapshot name
Mote: If the JProfiler GUI is connected, the saved snapshot will only have partial
content,
N
v
4 Back Finish Cancel

HPROF heap snapshots

In situations where taking a heap snapshot produces too much overhead or consumes too much
memory, you can use the HPROF heap snapshots that the JVM offers as a built-in feature. Because
the profiling agent is not required for this operation, this is interesting for analyzing memory
problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

+ For live sessions, the JProfiler GUI offers an action in the main menu to trigger an HPROF heap
dump.

@ Animated Bezier Curve Demo - JProfiler — O X
Session View Profiling Window Help
E— . . E— —
B @ g Start Recordings + 9 ﬁ [7]
Start Stop Recordings F8 Wigw Stop Probe Show | Add To
Gy P ings | HEP Gibn e || Tk
| W& stait Request Tracking Ctrl+F8 .
. _ m Disable Triggers And Custom Probes F& bnte B Tradker Servlets
Enable Trigger Groups Shift+F6 URLs from sarvlet and ISP invocstions
I Live I # Save HPROF snapshot Ctrl+Shift+5 I ~ | Aggregation level: 0 Methods ~
* Mark Heap ~
Q Run Garbage Collector Shift+F4
Time - Average Time Events
h Fe2t AL Add Bookmark = g
I Edit Bockmarks Shift+F3
CPU
Show Global Filters for Methed Call Recording

+ JProfiler has a special "Out of memory exception" trigger to save an HPROF snapshot when
an Qut Of Menor yEr r or is thrown. This corresponds to the VM parameter "

- XX: +HeapDunmpOnQut O Menor yEr r or

that is supported by HotSpot JVMs.

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

39

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

@ Trigger Wizard - Out of memory exception X

1. Trigger type Configure actions for this trigger

2. Actions

3. Description Configured actions:

4, Group ID

5. Einished H Create an HPROF heap dump +
2
4

4 Back Next p Finish Cancel

The jmap executable in the JDK can be used to extract an HPROF heap dump from a running
JVM.

JProfiler includes the command line tool j pdunp that is more versatile than jmap. It lets you
select a process, can connect to processes running as a service on Windows, has no problems
with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files. Execute it with the
- hel p option for more information.

) http://download.oracle.com/javase/6/docs/technotes/tools/share/jmap.html

40

http://download.oracle.com/javase/6/docs/technotes/tools/share/jmap.html

Telemetries

One aspect of profiling is monitoring scalar measurements over time, for example the used heap
size. In JProfiler, such graphs are called telemetries. Observing telemetries gives you a better
understanding of the profiled software, allows you to correlate important events over different
measurements and may prompt you to perform a deeper analysis with other views in JProfiler
if you notice unexpected behavior.

Standard telemetries

In the "VM Telemetries" section of the JProfiler Ul, a number of telemetries are recorded by
default. For interactive sessions they are always enabled and you do not have to start or stop
their recording.

To compare multiple telemetries on the same time axis, the overview shows multiple small-scale
telemetries on top of each other with a configurable row height. Clicking on the telemetry title
activates the full telemetry view.

Q.- Filter v
. Telemetries
................. I B B B e R
H ' B 0:40
Overview 300 MB ~
Memary Memory
Recorded Objects
Recorded Throughput
GC Activity
GC Activity
Classes 3,000
Threads Classes
0:02.0 [Jan 29, 2018 3:16:54 PM]
CPU Load 0
» mm Runnable threads: 0
Custom Telemetries mm Blocked threads: 4
Threads Threads in Met1jO: &
|
. = Waiting threads: 4
Live memory
‘ o ‘L“".\J ® Total number of threads: 14
30 %
ﬁ Heap Walker PU Load A ‘ | v
] Row height: I p ﬁ |--|
-

The full view shows a legend with current values and may have more options than what is visible
in the overview. For example, the "Memory" telemetry allows you to select single memory pools.

Memary pool: | Heap ~
. Telemetries

PS Eden Space
Overview 4 -PsOld Gen

PS5 Survivor Space
MNon-Heap
7 |- Code Cache
il Compressed Class Space

Metaspace

Memory 300 M8

Recorded Objects

Recorded Throughput

GC Activity

200 MB —
Classes

Threads
CPU Load

Custom Telemetries 100 MB ~

‘ Live memory
i Heap Walker

] = Free size: 229.5ME e Used size: 21.85MB mem Committed size: 251.4MB wmm Maximum: 2» S8 80 L

o

41

Probes also publish telemetries. These telemetries are not included in the "Telemetries" view
section, but are part of the "Telemetries" tab of the corresponding probe. Recording of those
telemetries is coupled to the recording of their parent probe.

Finally, there are "tracking" telemetries that monitor a scalar value that is selected in another
view. For example, the class tracker view allows you to select a class and monitor its instance
count over time. Also, each probe has a "Tracker" view where selected hot spots or control objects
are monitored.

-

I CPU views 4Telemetries Events B8 Tracker i _ JDBC
JDBC connactions and exscution of statements
Threads Show: | [Event durations] jdbe:hsqldb:hsgl:/localhost/test RGP <
- | [T e B
n 010 0:20 0:30 0:40 0
1 Moritors & locks A
800 ms
Databases E
; 700 ms — | {
JpBC 600 ms
JPAHibernate 500 ms 3 ®
MongoDE E 0:12.0 [Jan 29, 2018 3:16:57 PM]
400 ms
2 7 3 = Statement execution: 501.6 ms
assandra 300 ms 3 = Prepared statement execution: 5.7 ms
HBaze 1 = Batch execution: 0 ms
200 ms m Total: 507.3ms
o JEE &Probes 100 ms T
] |
] T
an N I
MBeans
w = Statement execution: 504ms W Prepared statement execution: 3.5ms = Batch execution » 5 5 |l o

Bookmarks

JProfiler maintains a list of bookmarks that are shown in all telemetries. In an interactive session,
you can add a bookmark at the current time by clicking on the Add Bookmark tool bar button, or
by using the Add Bookmark Here feature in the context menu.

2O H 2 2 8 % S(%&|Lt @ O + F

Start Save Session Start Stap Start Add Wi Facl Canfigure
Center 2% napshot Sewings | Recordings Recordings Tracking | 7" 9 fpookmark || B satings | PP | Telemetry Telemetres
Session Profiling View specific
......... IR R R R R R RN
. 5 R . .
- Telemetrics 0:10 0:20 0:30 0:40 0:50
A
Overview 20 ‘ ‘ ‘
Memory 4
Recorded Objects] ‘ ‘ ‘
Recorded Throughput ‘ ‘ ‘
GC Activity
Im Add Bockmark Here I
Classes
A“k Delete Bookmark
10 +——
Threads Edit Bookmark
CPU Load Graph Type 3y
Custom Telemetries
Zoom >
-I:I' Live memory 1 t Export View Ctrl+R
1 View Settings Ctrl+T
b Heap Walker T
. = Runnable threads: 0 = Blocked threads: 0 Threads in NetI/0: 6 F— Waiting threads: » }9 ,@ |- -|
-
o @ 2activerecordings | C{) Auto-update 2s VM #1 00:34 & Profiing

42

Bookmarks can not only be created manually, they are added automatically by the recording
actions to indicate the beginning and the end of a particular recording. With trigger actions or
with the controller API, you can add bookmarks programatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can edit
existing bookmarks and change these properties.

@ Edit Bookmark X
Bookmark Properties
Description: |Stopped JDBC recording
Colr: (@) Default
(0) Custom
- 0, 0,0 -
Draw dashed line

If right-clicking several bookmark in a telemetry is too inconvenient, you can use the Profiling->Edit
Bookmarks action from the menu to get a list of bookmarks. This is also the place where you can
export bookmarks to HTML or CSV.

@ Edit Bookmarks >

Available bookmarks:

Time & Bookmark
0:12.995 [Jan 29, 2
0:31.35
0:36.065 [Jan 29, 2

PIM] s Unnamed bookmark “
1 Stopped JDBC recording
V] s Unnamed bookmark

O rep

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler Ul to
supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible in the
"Telemetries" section. In a script telemetry, you have access to all classes that are configured in
the classpath of the current JProfiler session. If a value is not available directly, add a static
method to your application that you can call in this script.

43

& Edit
Settings Edit Search Code Help

“h = - \
oc $ B & »ed %O
Unds Redo | Copy Cwt Page I—i:tno\’:y Find Replace C;r;;ﬁle Help

Line caption: |System Load Average

Please enter an expression {no trailing semicolan) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

E”N”ll

- com.jprofiler.api.agent. SoriptContext scriptContext

The expected return type is long

Telemetry script:

1 {long)ManagementFactory.getOperatingSystemMiBean () .getSystemLoadhverage ()

Coce

The above example shows a call to a platform MBean. Graphing scalar values of MBeans is more
conveniently done with an MBean telemetry. Here, an MBean browser allows you to select a
suitable attribute. The attribute value must be numeric.

€ Select Numeric MBean Attribute x
Filter Filter b
com.jprofiler. api.agent.mbean Name value
Fom.sun.management = HeapMemoryUsage i
& Wiz e | conmitted 2574
[GarbageCollector [type] o init 253435456
£#-{77] MemoryManager max 3808428032
-] MemoryPool L used 55075504
'@ Classljoadmg_ NonHeapMemoryUsage [iava.lang. management. MemoryUsage]
H @Compllanon_ - ObjectPendingFinalization... 0
@ emory [type] o ~Verbose false
H {8 operatingsystem [type] - ObjectName java.lang: type =Memory
(& Runtime [ty
(& Threading [type]
java.nio
java.util.logging
Qe conce

You can bundle several telemetry lines into a single telemetry. That's why the configuration is
splitinto two parts: the telemetry itself and the telemetry line. In the telemetry line, you just edit
the data source and the line caption, in the telemetry you can configure unit, scale and stacking

which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be shown.
The scale factor is useful to convert a value to a supported unit. For example, if the data source
reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you set the scale
factor to -3, the values will be converted to bytes and by choosing "bytes" as the unit for the
telemetry, JProfiler will automatically display the appropriate aggregate unit in the telemetry.

44

[l = Heap Memory Usage [bytes] + |
committed [MBean line java.lang:type=Memory #HeapMemoryLisage fcommitted]

“nit [MBean line java.lang:type=Memory #HeapMemoryUsage finit]

@ Edit Telemetry X
Name: Heap Memory Usage
Unit: bytes ~

Scale (10+n): | 015 @

[] Stack all ines in the telemetry and show an area graph

€ Help

Cancel

Custom telemetries are shown at the end of the "Telemetries" section in the order in which they
are configured.

\ .5 \ . ,
. Telemetries 0:10 0:20 0:30 0:40 0:

Overview 400 MB

Memory

Recorded Objects

Recorded Throughput 300 MB
GC Activity

Classes

=

Threads 200 MB

CPU Load

Heap Memory Usage
-l:l Live memary
|
b Heap Walker

] = committed: 311.4ME = init: 258.4 MB 2.4

-

100 MB

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained in order
to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled once per
second. For the standard telemetries, there is no additional overhead for this data collection.
For custom telemetries, the overhead is governed by the underlying script or MBean.

45

CPU Profiling

When JProfiler measures the execution times of method calls together with their call stacks, we
call it "CPU profiling". This data is presented in a variety of ways. Depending on the problem you
are trying to solve, one or the other presentation will be most helpful. CPU data is not recorded
by default, you have to switch on CPU recording [p. 23] to capture interesting use cases.

Sampling versus instrumentation

Measuring method calls can be done with two different techniques called "sampling" and
"instrumentation”, each of which has advantages and drawbacks: With sampling, the JVM is
stopped periodically and the current call stack is inspected. With instrumentation, the bytecode
of selected classes is modified to trace method entry and exit.

When processing sampling data, subsequent samples are compared. Their common call stack
shows which method was likely executing in the entire time between both samples. With a large
number of samples, a statistically correct picture emerges. The advantage of sampling is that
has a very low overhead. No bytecode has to be modified and the sampling period is much larger
than the typical duration of a method call. The downside is that you miss short-running method
invocations and you cannot determine method invocation counts. This does not matter if you
are looking for performance bottlenecks, but can be inconvenient if you are trying to understand
the detailed runtime characteristics of your code.

...

{ Method A] = { Method A] { Method A: +5 ms]
5 }] I
(Method B] = (Method B] (Method B: +5 ms]

(Method X] * (Method Y]

T
T+5ms time

9 »

—

Instrumentation, on the other hand, can introduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of performance
hot spots because of the inherent overhead of the time measurement but also because many
methods that would otherwise be inlined by the hot spot compiler must now remain separate
method calls. For method calls that take a longer amount of time, the overhead is insignificant.
If you can find a good set of classes that mainly perform high-level operations, instrumentation
will add a very low overhead and can be preferable to sampling. Also, the invocation count is
often important information that makes it much easier to see what is going on.

46

[Profiling agent]

r A 1 i
Falifal i 2 ol ot
X:3.5ms Y:4.5ms
calls calls

Method B: 11 ms

A
calls
Method A

T T T T T T =

T T T T T T T T T
12 3 45 6 7 8 9101112131415 timeinms

Call tree

Keeping track of all method calls and their call stacks would consume a considerable amount of
memory and could only be kept up for a short time until all memory is exhausted. Also, it is not
easy to intuitively grasp the number of method calls in a busy JVM. Usually, that number is so
great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected data is
aggregated. In that way, you can tell how important method calls are with respect to the entire
activity in a certain time period. With single traces, you have no notion of the relative importance
of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with the
observed timings and invocation counts. The chronological aspect is eliminated and only the
total numbers are kept. Each node in the tree represents one call stack that was observed at
least once. Nodes have children that represent all the outgoing calls that were seen at that call
stack.

A A A A A:7ms
é i é é i: C1ms
¢ ¢ B:6ms
C D
C:3ms
2ms 1ms 3ms 1Tms
D:1ms
method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when you
start CPU profiling, because the top-down view that follows method calls from the starting points
to the most granular end points is most easily understood. JProfiler sorts children by their total
time, so you can open the tree depth-first to analyze the part of the tree that has the greatest
performance impact.

47

-

Live memor:
l" oa Y
b Heap Walker
I CPU views

Call Tree

Hot Spots

Call Graph

Method Statistics
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

n Manitnrs & lnrdes
-

Call tree filters

Thread selection: . All thread groups ~ | Aggregation level: @ Methods

Thread status: == Runnable ~ | View mode: = Tree

[=-(}) N 71.2% - 701 ms - 5 inv. org.hsqldb. server. ServerConnection.run
(L) I 71.0% - 639 ms - 155 inv. org.hsgldb. server. ServerConnection. receiveResult
0.1% - 788 ps - 1inv. org.hsgldb.server.ServerConnection, init
0.1% - 621 ps - 151 inv, java.io.DatalnputStream.readByte
B 23.3% - 283 ms - 5 inv, java.util.concurrent. ThreadPoolExecutor $Worker. run
0.0% - 144 ps - 1inv. org.hsgldb.server.Server $ServerThread. run

B8

Call Tree View Filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist of
framework classes that you don't care about and your own classes will be deeply buried. Calls
into libraries will show their internal structure, possibly with hundreds of levels of method calls
that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes are
recorded. As a positive side-effect, less data has to be collected and less classes have to be
instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from commonly
used frameworks and libraries.

@) Session Settings X
Define Filters Exceptional methods Ignored methods Split methods
—
Filters define which dasses are recorded for CPU profiing.)
AEEL';:“EH o All methods of profiled packages are shown in the call tree. Start the filter list
9 with this type to profile selected packages only.
The first call from a profiled dass into a compact dass is shown in the call tree,
T but further calls into compact dasses are not measured separately.
Filter ® Ignored packages or dasses are not profiled at all,
Settings
Type Class or Package +
o 8
- () Compact SProx
Profiing & v G
Settings Compact Sjava.
Compact Sjavax.
Compact AOPContainerProxys
Triggers Compact COM.doudscape.
Settings Compact COM.objectspace.
Compact COM.rsa.
; Compact EDU.oswego. H
Database Compact GregorSamsa
Settings A
Compact __
o Compact allaire jrun v| W
Note: [tis recommended to select the profiled packages instead of profiing everything
JEE & except a list of packages.
Prabes
Show Filter Tree
General Settings Cancel

48

Of course this list is incomplete so it's much better that you delete it and define the packages of
interest yourself. In fact, the combination of instrumentation and the default filters is so
undesirable, that JProfiler suggests to change it in the session startup dialog.

@ Session Startup x

Settings
Profiing settings: | Template: Instrumentation, al fesiures supporied Edit
D) For low-overhead CPU profiing, switch to sampling,

Filter settings: 1 filter rule for methed call recording, 1 exceptional method Edit

iy, frhe configured exclusive fiters may be too broad. In that case, the overhead of
nstrumentation may be very high, and CPU times wil be distorted. Pless= define profiled

ckages or switch to sarnphr'.
Trigger settings: Mo active triggers Edit
Database settings: |4 enabled databases Edit
Probe settings: 10 enabled built-in probes Edit
Startup And Exit
Initial recording profile: | JDBC and JNDI v Configure
JVM exit action: Let the JVM exit and disconnect | More -

Performance
Overhead: | I

The overhead is composad of the selacted profiling settings and the selected recording profil.

Cancel

The filter expressions are compared against the fully qualified class name, so com nycor p.
matches classes in all nested packages, like com nycor p. nyapp. Appl i cati on. There are three
types of filters, called "profiled", "compact" and "ignored". All methods in "profiled" classes are
measured. This is what you need for your own code.

In a class that is contained by a "compact” filter, only the first call into that class is measured,
but no further internal calls are shown. "Compact" is what you want for libraries, including the
JRE. For example, when calling hashMap. put (a, b) you probably want to see HashMap. put ()
in the call tree, but not more than that - its inner workings should be treated as opaque unless
you are the developer of the map implementation.

Finally, "ignored" methods are not profiled at all. They may be undesirable to instrument due to
overhead considerations or they may simply be distracting in the call tree, such as internal Groovy
methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before you
start the session, the package browser can only show you packages in the configured class path
which often does not cover all the classes that are actually loaded. At runtime, the package
browser will show you all loaded classes.

49

@ Select Filters x

Packages of loaded dasses that can be instrumented:

- [] € com {66 dasses)
- [() javax (161 classes)
- [] () jdbe (17 dasses)
=[] (2 org (724 dasses)
£ []) apache {26 dasses)
¢ E- [0 juli (4 dasses)
| B[O tomeat (22 dasses)
i =[]) jdbe (22 classes)
[2 hsaldb {698 dasses)
- [] () sun (727 dasses)

Type into the tree to start quick search
Filter type: (®) Profiled () Compact () Ignored
ou have selected a total of 22 dasses.

e

The configured list of filters is evaluated from top to bottom for each class. At each stage, the
current filter type may change if there is a match. It's important what kind of filter starts off the
list of filters. If you start with a "profiled" filter, the initial filter type of a class is "compact", meaning
that only explicit matches are profiled.

a.A ab.B ab.cC d.D

& profiled
compact

\/ —> match

Result: @

If you start it with a "compact" filter, the initial filter type of a class is "profiled". In this case, all
classes are profiled except for explicitly excluded classes.

50

a.A a.b.B ab.cC d.D
------ » Default: @ V) V) V)

@ ' a.* —> >

@D\ @ abx —9—9

Qv abcr } > @ profiled

: : compact

''''''''''''''''''''''''''''''' Y v y v tch
Result & & ~7 matc

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are displayed
on the call tree nodes. There are two times that are interesting for any node, the total time and
the self time. The self time is the total time of the node minus the total time in the nested nodes.

Usually, the self time is small, except for compact-filtered classes. Most often, a compact-filtered
class is a leaf node and the total time is equal to the self time because there are no child nodes.
Sometimes, a compact-filtered class will invoke a profiled class, for example via a callback or
because it's the entry point of the call tree, like the r un method of the current thread. In that
case, some unprofiled methods have consumed time, but are not shown in the call tree. That
time bubbles up to the first available ancestor node in the call tree and contributes to the self
time of the compact-filtered class.

actual call sequence filtered call sequence

—

[Q A: self time 1 ms

[B: self time 2 ms J

_________________ S v
' X:selftime3ms | [B: self time 6 ms J
R A .
: Y:selftime1ms |
. > elme o & profiled
compact

[Q C: self time 3 ms J:

The percentage bar in the call tree shows the total time, but the self time portion is shown with
a different color. Methods are shown without their signatures unless two methods on the same
level are overloaded. There are various ways to customize the display of the call tree nodes in

51

the view settings dialog. For example, you may want to show self times or average times as text,
always show method signatures or change the used time scale. Also, the percentage calculation
can be based on the parent time instead of the time for the entire call tree.

@ Call Tree View Settings X

Mode Description

Show time

[[] Show self time

Show invecation count

[[] Show average time values in brackets (&)
Always show fully qualified names (7]

[] Always show signature (7]

Time Scale

® automatic @ O Mixedunits s Oms Ops

Display Threshold

[Hide calls with less than 0,01 % @

Percentage Calculation

(O Relstive) () Absolute)

Thread status

At the top of the call tree there are several view parameters that change the type and scope of
the displayed profiling data. By default, all threads are cumulated. JProfiler maintains CPU data
on a per-thread basis and you can show single threads or thread groups.

-

Thread selection: §§ All thread groups ~ | Aggregation level: | () Methods w
Live memory
!" s QU PRI - Al thread groups View mode: = Tree v
9 HSQLDE Connections @443b7951
ek : m; HSGLDB Connection @387d8175 -°””§§“§Z-r“k'; "
G e ok FLom iy HSQLDS Connection @5b041556 ceutorsiiorker.rn
El@ HSQLDE Connection @60f78175
Puvi = HSQLDE Connection @64dd4ab2 bc. pool. DataSourceProxy.getConnection
views ; HSQLDE Connection @71fa3214 rker testStatementsPath 1
H orker. testStatement.
H a8 man Y hte t.executeQuer
Call Tres nt. ¥

4
¢ [() 08.6% - 192 ms - 43inv. org.hsqldb.jdbc. IDBCStatement. executeQuery
- M 0.2% - 4.808 us - 23 inv. izva.sal.Connection.reateStatement

At all times, each thread has an associated thread status. If the thread is ready to process bytecode
instructions or is currently executing them on a CPU core, the thread status is called "Runnable”.
That thread state is of interest when looking for performance bottlenecks, so it is selected by
default.

Alternatively, a thread may by waiting on a monitor, for example by calling®bj ect . wai t () or
Thr ead. sl eep() in which case the thread state is called "Waiting". A thread that is blocked
while trying to acquire a monitor, such as at the boundary of asynchr oni zed code block is in
the "Blocking" state.

Finally, JProfiler adds a synthetic "Net I/0O" state that keeps track of the times when a thread is
waiting for network data. This is important for analyzing servers and database drivers, because
that time can be relevant for performance analysis, such as for investigating slow SQL queries.

52

-

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

-i:l Live memory =
] Thread status: == Runnable ~ | View mode: = Tree ~

b Heap Walker
I CPU views

Call Tree

7) e 7 Al states

onnection.run ~
peecutor $Worker.run

| E-@wm s

H g@

fibc. pool, DataSourceProxy.getConnection
TSI = T OO JODCTE drker. testStatementsPath 1

@l 10.2% - 224 ms - 25 inv. jdbc. JdbcTestWorker. testStatement

E‘U 09.9% - 219 mg - 43 inv. java.sql.Statement.executeQuery

--@l 9.9% - 212 ms - 49 inv. org.hsqldb.jdbc. JDBCStatement, executeQuery

-0 0.2% - 4,853 us - 25 inv. ava.sal.Connection, createStatement

If you are interested in wall-clock times, you have to select the thread status "All states" and also
select a single thread. Only then can you compare times with durations that you have calculated
with calls to System current Ti meM | | i s() in your code.

If you want to shift selected methods to a different thread status, you can do so with a method
trigger and an "Override thread status" trigger action, or by using the Thr eadSt at us class in
the embedded [p. 143] or injected [p. 138] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option that
is activated by invoking View->Find from the menu or by directly starting to type into the call tree.
Matches will be highlighted and search options are available after pressing PageDown. With the
Ar r owp and Ar r owDown keys you can cycle through the different matches.

-

Thread aelection: n. Ll thead nronn ~ | Aggregation level: | (D) Methods ~
’,:, Live memory Search for: TW v =
’ [Match case Use CamelHumps) ~ | View mode: = Tree ~
=k G W 71.2% - 701 ms - 5inv. org.hsgldb. server. ServerConnection.run
ﬁ Heap Walker E—J--@— 71.0% - 699 ms - 155 inv. org.hsgldb. server.ServerConnection receiveResult

W 57, 3% - 564 ms - 155 inv. org.hsgldb. Session. execute

I 40,5% - 400 ms - 36 inv. org.hsgldb. Session.executeDirectStatement

W 11.7% - 115 ms - 60 inv. org.hsgldb.Session. executeCompiledStatement
12.7% - 26,165 ps - 45 inv. org.hsgldb.StatementManager.compile

12,0% - 19,352 pe - 14 inv, org.hsgldb.5ession.executeCompiledBatchStatement
0,2% - 1,862 ps - 150 inv. org.hsqgldb.Session.performPostExecute

I CPU views

Sz 0,1% - 523 ps - 45 inv. org.hsgldb.result. Result.newPrepareResponse
Hot Spots 0.0% - 154 ps - 155 inv. org.hsqldb.lib.java. JavaSystem.gc
0.0% - 111 ps - 15inv. org.hsgldb.5SessionData. setResultSetProperties
call Graph 0.0% - 18 pg - 75 inv. org.hsgldb. Statement.getType
P 0.0% - 17 ps - 60 inv. org.hsgldb.result.Result.getUpdateCount
X W 12,4% - 121 ms - 150 inv. org.hsgldb. result. Result. write
Method Statistics

£

£ 1.0% - 9,446 ps - 155inv. org.hsgldb.result. Result. newResult
. G0 0.1% - 833 ps - 150 inv. org.hsgldb. rowio.RowInputBinary.resetRow
Complexity Analysis () 0.1% - 794 ps - 155 inv. org.hsgldb. result. Result.readLobResults
e

0.0% - 373 ps - 150 inv. org.hsgldb. rowio . RowOutputBinary . reset

Call Tracer [0.0% - 235 ps - 155 inv, org.hsgldb. server, Server. printRequest
0.0% - 43 ps - 155 inv. org.hsqldb.result.Result.getType
Javascript XHR 8 0.1% - 768 ps - 1inv. org.hsgldb.server.ServerConnection.init
0.1% - 621 pg - 151 inv. java.io.DataInputstream.readByte
—

W 23,8% - 283 ms - 5 inv, java.util.concurrent. ThreadPoolExecutor $Worker,run

Threads i [mY 13,85 - 283 ms - 5 inv, jdbc. JdbeTestillorker.cal
(@) 0.0% - 144 us - Linv. org.hsgidb.server.ServerServerThread.run
N e T Call Tree View Filters v | @
-

Another way to search for methods, classes or packages is to use the view filter at the bottom
of the call tree. Here you can enter a comma-separated list of filter expressions. Filter expressions
that start with a "-" are like compact filters, otherwise they are like profiled filters. Just like for
the filter settings, the initial filter type determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options. By
default, the matching mode is "Contains", but "Starts with" may be more appropriate when
searching for particular packages.

53

-

Thread selection: . All thread groups ~ | Aggregation level: @ Methods w

-i:l Live memory =

] Thread status: == Runnable ~ | View mode: = Tree ~
=- 1) e—100.0% - 421 ms - 5 inv. java.util.concurrent. ThreadPoolExecutor $Worker.run ~

b Heap Walker E}--O_ 100.0% - 421 ms - Sinv. jdbc. JdbcTestWorker . call

B@— 100,0% - 421 ms - 5 inv, jdbc, JdbcTestworker, cal
= n N 100.0% - 421 ms - 5 inv, org.apache. tomcat. jdbc. pool. DataSourceProxy.getConnectic
X =] @— 59.3% - 250 ms - 18 inv. jdbc. JdbcTestWorker. testStatementsPath1
CPU views £1- () W 40.8% - 172 ms - 18 inv. jdbc. JdbcTestiorker. testStatement
90 BN 39, 7% - 167 ms - 35 inv. java.sgl. Statement.executeQuery
Call Tree . M IDBC calls Show in probe call tree
1.1% - 4,667 ps - 18 inv. java.sqgl.Connection, createStatement
3 0.0% -92 ps - 15 inv. java.sql.Statement.dose

Fot Spats [=F @I 18.5% - 78,073 ps - 15inv. jdbc. JdbcTestWorker. testPreparedStatement
call Granh i--) 0 8.0% - 33,875 ps - 45 inv. java.sql.Connection.prepareStatement
all rap! -1 4.3% - 18,225 ps - 30 inv. java.sgl.PreparedStatement. executeQuery

: .. M JDBC calls Show in probe call tree

=) nl 2.3% - 9,879 ps - 15inv. java.sql.PreparedStatement.executeUpdate
i ;= IDBC calls Show in probe cal tree

Complexity Analysis =10 1.8%-8,039 ps - 15inv. java.sql.PreparedStatement.execute

. M IDBC calls Show in probe call tree

Method Statistics

Call Tracer = n 1.5% - 6,174 ps - 15 inv, java.sql.PreparedStatement.executeBatch
i " /@ J0BC calls Show in probe call tree
JavaScript XHR i {0 0.2% - 967 s - 15inv. java.sql. PreparedStatement. addBatch
0.2% - 716 ps - 90 inv. java.sgl.PreparedStatement. setString
- 9--@- 38.2% - 161 ms - 15inv. jdbc. JdbcTestWorker, testStatementsPath2
Threads =1 () B 24,9% - 104 ms - 15 inv. jdbc. JdbcTestWorker, testStatement hd
£ >
(] Manitrirs & lnrks I -org-hsgidb - IO
-

Different views on the call tree

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation level
selector also contains a "Java EE components" mode. If your application uses Java EE, then the
call tree will show additional nodes that split the call tree when the call stack crosses the boundary
of a Java EE component. The "Java EE components" aggregation level removes all method nodes
and only leaves the component nodes in the tree.

-

Thread selection: . All thread groups ~ | Aggregation level: Packages ~
Live memory
":’l Thread status: | B8 Runnable ~ | View mode: © Methocs
(O Classes
[F-()) m— 74, 5% - 1,743 ms -6 inv. org.hsgldb. server ackag
ﬁ Heap Walker =) mm——51,4% - 1,442 ms - 460 inv. org.hsqldo () Java EE Companents

(-0 8.2% - 193 ms - 279,624 inv. org.hsqldb.lib
[()13.0% - 71,208 ps - 38,062 inv. org.hsgldb.map
) i =210 0.3%-8,050 ps - 12,502 inv. java.lang
CPU views H

=) 0.0% - 882 ps - 3,412 1inv. org.hsgldb
E}--"_ 0,3% - 6,107 ps - 7,797 inv. java.lang
Pl 0.0% - 376 ps - 1,737 inv, org.hsgldb

Call Tr H
atires -0 0.0% - 1,089 ps - 836 inv. java.lang.reflect
T.) 0.0% - 299 ps - 364inv. java.util.concurrent.locks
Eatsnoe 0.0% - 1ps - 1inv. java.io
=01 5. 7% - - 18,107 inv. org. N
call Graph -1 5.7% - 133 ms - 18,107 inv., org.hsqldb.index

()1 2.1% - 49,059 ps - 47,931 inv., org.hsaldb.persist
H 0.0% - 134 ps - 319 inv. org.hsqldb.index

Method Statistics

B 0.2% - 3,570 ps - 15,757 inv. org.hsgldb
E1-()1 5.4% - 126 ms - 12,105 inv. org.hsqldb.persist
ET07 TEAE RS " 5-0)12.9% - 69,225 s - 40,905 inv. org.hsaldb.lb

Another way to view the call tree is as a tree map. Each rectangle in the tree map represents a
particular node in the tree. The area of the rectangle is proportional to the length of the size bar
in the tree view. In contrast to the tree, the tree map gives you a flattened perspective of all leafs
in the tree. If you are mostly interested in the dominant leafs of the tree, you can use the tree
map in order to find them quickly without having to dig into the branches of the tree. Also, the
tree map gives you an overall impression of the relative importance of leaf nodes.

54

-

Thread selection: ‘. All thread groups ~ | Aggregation level: @ Methods w
‘ Live memory

i Heap Walker
I CPU views

Call Tree

Thread status: ‘- Runnable w | View mode: EH Tres Map

Hot Spots

. .~ [org-hsqidb.Routine.invokeJavaMethod

Call Graph . 'ﬁme: 1.8%- 49,232 s
Method Statistics - . S:Ii:'félﬁevels
Complexity Analysis .
Call Tracer
JavaScript XHR
=
—2‘ Threads Depth: 2 24levels
n e |Q' Call Tree View Filters > | o
=

By design, tree maps only display values of leaf nodes. Branch nodes are only expressed in the
way the leaf nodes are nested. For non-leaf nodes with significant self values, JProfiler constructs
synthetic child nodes. In the diagram below, you can see that node A has a self value of 20% so
thatits child nodes have a sum of 80%. To show the 20% self value of Ain the tree map, a synthetic
child node A" with a total value of 20% is created. It is a leaf node and a sibling node of B1 and
B2. A" will be shown as a colored rectangle in the tree map while A is only used for determining
the geometric arrangement of its child nodes B1, B2 and A'.

A
Total: 100%
Inherent: 20%

B1 B2 A
Total: 40% Total: 40% Total: 20%
Inherent: 0% Inherent: 0% Inherent: 20%

NN

The actual information for tree map nodes is displayed in tool tips that are immediately shown
when you hover over the tree map. The numbers correspond to the information that is shown
in the tree view mode. The tree map is shown up to a maximum nesting depth of 25 levels and
its scale is always relative to the currently displayed nodes.

Both the higher aggregation levels as well as the tree map are a way to step back from the detail
of the method level and take a bird's eye view. However, you will often want to go back to the
method level when you find a point of special interest. If a node is selected and you change the
method aggregation level, JProfiler tries to preserve the call stack as best as possible. With the
tree map, the Show in tree action in the context menu offers a way back into the call tree.

55

Hot spots

If your application is running too slowly, you want to find the methods that take most of the
time. With the call tree, it is sometimes possible to find these methods directly, but often that
does not work because the call tree can be broad with a huge number of leaf nodes.

In that case, you need the inverse of the call tree: A list of all methods sorted by their total self
time, cumulated from all different call stacks and with back traces that show how the methods
were called. In a hot spot tree, the leafs are the entry points, like the mai n method of the
application or the r un method of a thread. From the deepest nodes in the hot spot tree, the call
propagates upward to the top-level node.

ad Thread selection: @ All thread groups « | Aggregation level: () Methods w
b Thread status: | =88 Runnable ~ | Hotspotoptions: Self times ~
ﬁ Heap Walker
Hot Spot Self Time « Average ... Invocations
= /% java.sgl.Connection.prepareStatement I 40,156 ps (34 %) 704 ps 57 &
I CPU views = @- 34.6% - 40,156 ps - 57 hot spotinv. jdbc. JdbcTestWorker. testPreparedStatement.
=) ™ 23,5% - 27,291 ps - 30 hot spot inv. jdbc. JdbcTestWorker. testStatementsPath1
call Tree E}--@ BN 73,5% - 27,291 ps - 30 hot spotinv. jdbc. JdbcTestWorker . call
H =)\ ™ 23.5% - 27,291 ps - 30 hot spot inv. jdbe. JdbcTestiworker, call
@- 23,5% - 27,291 ps - 30 hot spot inv. java,util. concurrent. ThreadPoolExecutor SWorker
A E -8 11.1% - 12,865 s - 27 hot spot inv. jdbc. JdbcTestWorker. testStatementsPath2
=10 8 11.1% - 12,865 s - 27 hot spot inv. jdbe. JdbeTestWarker.cal
Call Graph - W 11.1% - 12,865 ps - 27 hot spot inv. jdbc. JdbcTestiWorker. call
W)W 11.1% - 12,865 ps - 27 hot spot inv. java.util.concurrent. ThreadPoolExecutar $Worker 1
Method Statistics - /4 java.sgl.Statement.executeQuery I 23,528 ps (20 %) 734 ps 30
1, java.sql.PreparedStatement.executeQuery Il 11,913 ps (10 %) 313ps 38
Complexity Analysis - /8y java.sqgl.PreparedStatement.setString Ml 11,571 s (3 %) 103ps 112
1, java.sgl.PreparedStatement.execute W 5,870 ps (3 %) 519 ps 19
Call Tracer -/ jdbc. JdbcTestWorker. testPreparedstatement |l 6,654 ps (5 5%) 350 ps 19
- /4 java.sgl.PreparedStatement.executeBatch I 3,576 s (3 %) 198 ps 18
JavaScript XHR. ¥, java.sql.PreparedStatement.executeUpdate I 3,995 ps (2 %) 191ps 18
- /8 java.sql.Connection.createStatement | 1,458 ps (1 %) 97us 15
— - /i java.sgl.PreparedStatement.addBatch | 1,286 ps (1 %) Fips 18
Threads - /i javax.sql.DataSource.getConnection | 897 ps (0 5%) 179 ps 5
1, java.sql.Connection.cose 627 ps (0 %) 125ps 5
¥, jdbc, JdbcTestWorker, testStatement 244 s (0 %) 12us 20 w
r? Manitors &locks < >
Hot Spot View Filters ~ | @

-

The invocation counts and execution times in the backtraces do not refer to the method nodes,
but rather to the number of times that the top-level hot spot node was called along this path.
This is important to understand: At a cursory glance, you would expect the information on a
node to quantify calls to that node. However, in a hot spot tree, that information shows the
contribution of the node to the top-level node. So you have to read the numbers like this: Along
this inverted call stack, the top-level hot spot was called n times with a total duration of t seconds.

56

Call Tree Hot spots
Method A Method C
Count5 Count 4
- Q}Q\O)/ r \
Method C & Method A
Count 3 ,l' Count 3
> backtraces
Method B -L__| MethodB
Count 2 /hotspot 22| Count1
T / invocation -
)/ counts
Method C
Count 1

By default, the hot spots are calculated from self time. You can also calculate them from total
time. This is not very useful for analyzing performance bottlenecks, but can be interesting if you
would like to see a list of all methods. The hot spot view only shows a maximum number of
methods to reduce overhead, so a method you are looking for may not by displayed at all. In
that case, use the view filters at the bottom to filter the package or the class. Contrary to the call
tree, the hot spot view filters only filter the top-level nodes. The cutoff in the hot spot view is not
applied globally, but with respect to the displayed classes, so new nodes may appear after
applying a filter.

aad Thread selection: & All thread groups ~ | Aggregation level: @ Methods w
i Thread status: B Runnable ~ | Hotspot options: Self times w
'ﬁ Heap Walker
Hot Spot Self Time = Time calculation:
i = /& java.sql.Connection.prepareStatement I <0, 156 ys | | (@) Self times o
CPU views 1) 8 34.6% - 40,156 ps - 57 hot spot inv. jdbc. JdbcTestWorker. testP
) ™ 23.5% - 27,291 ps - 30 hot spotinv. jdbc. JdbcTestworker.tef | () Total times (7]

Call Tree

Hot Spots

@ BN 23,5% - 27,291 ps - 30 hot spotinv, jobc, JdbcTestWorkes
= -@- 23.5% - 27,291 ps - 30 hot spot inv. jdbc, JdbcTestw

l @- 23.5% - 27,291 ps - 30 hot spot inv. java.util.con:
=T M 11.1% - 12,885 ps - 27 hot spot inv. jdbc. JdbcTestiWorker. test
—@ B 11.1% - 12,865 ps - 27 hot spot inv. jdbe. JdbcTestWorker .|

Unprofiled dasses:

(®) Show separately

() Add to calling profiled dass)

7]

Call Graph =W 8 11. 1% - 12,865 ps - 27 hot spot inv. jdbe. JdbcTestior]
) : @l 11.1% - 12,865 ps - 27 hot spot inv, java.util.concurrent, ThreadPoolExecutor $Warker 1
Method Statistics - /4 java.sql.Statement.executeQuery I 23,528 ps (20 %) 734 ps 30

T dmum el DramcredShatament sven baoeres B 11 Q170 £40 0LY EEETN =

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no call
tree filters at all, the biggest hot spots will most likely always be methods in the core classes of
the JRE, like string manipulation, I/0 routines or collection operations. Such hot spots would not
be very useful, because you often don't directly control the invocations of these methods and
also have no way of speeding them up.

In order to be useful to you, a hot spot must either be a method in your own classes or a method
in a library class that you call directly. In terms of the call tree filters, your own classes are in
"profiled" filters and the library classes are in "compact" filters.

57

When solving performance problems, you may want to eliminate the library layer and only look
at your own classes. You can quickly switch to that perspective in the call tree by selecting the
Add to calling profiled class radio button in the hot spot options popup.

b Heap Walker
I CPU views

Call Tree
Hot Spots
Call Graph

Method Statistics

Call graph

Thread selection: . All thread groups ~ | Aggregation level: 0 Methods w

Thread status: == Runnable ~ | Hotspot options: Self times ~
Hot Spat Self Time - Time calculation:

[/8 java.sgl.Connection.prepareStatement N 40,156 ps | (@) Self times

..

34.6% - 40,156 ps - 57 hot spot inv. jdbec. JdbeTestWorker. testPy
N 73.5% - 27,291 ps - 30 hot spot inv. jdbc. JdbcTestWorker. te:
Q- 23.5% - 27,291 ps - 30 hot spotinv. jobc. JdbcTestworkes
&- m- 23,5% - 27,291 ps - 30 hot spot inv. jdbc, JdbcTesti:

(0) Total times

Unprofiled dasses:

W 23,5% - 27,291 ps - 30 hot spotinv. java.utl.con
E| Bl 11.1% - 12,865 ps - 27 hot spot inv. jdbc, JdbcTestWorker, test]
=10 B 11.1% - 12,865 ps - 27 hot spot inv. jdbc. JdbcTestorker |

(®) Show separately

(O Add to calling profiled dass

(7]
7]
7]
(7]

- ml 11.1% - 12,865 ps - 27 hot spotinv. jdbc. JdbcTestWor|

B 11,1% - 12,865 ps - 27 hot spot inv. java.util.concurrent. ThreadPoolExecutor $Worker .1
¥, java.sqgl.Statement.executeQuery I 23,528 ps (20 %)

imua enl Dramzradfiztamant avar kel ars B 11170 A0 B0

794 ps

e

30
m

Both in the call tree as well in the hot spots view each node can occur multiple times, especially
when calls are made recursively. In some situations you are interested in a method-centric
statistics where each method only occurs once and all incoming and outgoing calls are visible.
Such a view is best displayed as a graph and in JProfiler, it is called the call graph.

. Telemetries

Live memory
Ao

ﬁ Heap Walker
I CPU views

Call Tree

Hot Spots

Call Graph

Method Statistics
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

-

Thread selection: | @i All thread groups

Thread status: | =88 Runnable

|

[Mb 4iF |

R 09J EH e vle =

Aggregation level:

(@ Methods

stWorker
ntsPath2

F

s self 24 inv
Jdbe.JdbeTestWarker

/ 47,530 us, 540 ps self, 49 inv,

testStaternent
stWorker
ntsPath1
us self, 25 inv.

cr
2,075 us

One drawback of graphs is that their visual density is lower than that of trees. This is why JProfiler
abbreviates package names by default and hides outgoing calls with less than 1% of the total
time by default. As long as the node has an outgoing expansion icon, you can click on it again to
show all calls. In the view settings, you can configure this threshold and turn off package

abbreviation.

58

@ Call Graph View Settings X
Display Options
O s
Shorten packages (7]

[5how average times in brackets {E)

Color Information (7]

@) Self ime () Total time

Color Scale Base (7]

(®) Displayed methods only () All methods

Time Scale

® automatic @ O Mixedunits s Oms Cps

Display Threshold

Initially hide outgoing calls with less than | 1.0 % @

When expanding the call graph, it can get messy very quickly, especially if you backtrack multiple
times. Use the undo functionality to restore previous states of the graph. Just like the call tree,
the call graph offers quick search. By typing into the graph, you can start the search.

The graph and the tree views each have their advantages and disadvantages, so you may
sometimes wish to switch from one view type to another. In interactive sessions the call tree
and hot spots views show live data and are updated periodically. The call graph however, is
calculated on request and does not change when you expand nodes. The Show in Call Graph
action in the call tree calculates a new call graph and shows the selected method.

Thread selection: @ All thread groups ~ | Aggregation level: @ Methods w
Telemetries

Thread status: == Runnable ~ | View mode: = Tree w
1) e—100.0%
- () —

E|‘: Show Call Graph |

Add Method Trigger

- 223 ms - 5inv. java.util.concurrent. ThreadPoolExecutor $Worker.run

-I:l Live memaory
’

)

'ﬁ Heap Walker

stementsPath 1
itementsPath2

G-‘ Add As Exceptional Method tion
=S Split Method with a Script
I ERIUETE (-] Intercept Method With Script Probe
> Merge splitting level Ctrl+Alt+M
Call Tree - Cand &
SE Remove Selected Sub-Tree Delete

Honk Srnbe

Switching from the graph to the call tree is not possible because the data is usually not comparable
anymore at a later time. However, the call graph offers call tree analyses with its View->Analyze
actions that can show you trees of cumulated outgoing calls and backtraces for each selected
node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features that are
explained in detail in a different chapter [p. 147] . Also, there are other advanced CPU views that
are presented separately [p. 168] .

59

Memory Profiling

There are two ways of getting information about objects on the heap. On the one hand, a profiling
agent can track the allocation and the garbage collection of each object. In JProfiler, this is called
"allocation recording". It tells you where objects have been allocated and can also be used to
Create statistics about temporary objects. On the other hand, the profiling interface of the JVM
allows the profiling agent to take a "heap snapshot" in order to inspect all live objects together
with their references. This information is required to understand why objects cannot be garbage
collected.

Both allocation recording and heap snapshots are expensive operations. Allocation recording
has a large impact on the runtime characteristics, because the j ava. | ang. Cbj ect constructor
has to be instrumented and the garbage collector continuously has to report to the profiling
interface. This is why allocations are not recorded by default and you have to start and stop
recording [p. 23] explicitly. Taking a heap snapshot is a one-time operation. However, it can
pause the JVM for several seconds and the analysis of the acquired data may take a relatively
long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The "Live memory" section presents
data that can be updated periodically whereas the "Heap walker" section shows a static heap
snapshot. Allocation recording is controlled in the "Live memory" section but the recorded data
is also displayed by the heap walker.

€ Animated Bezier Curve Demo - JProfiler - m] *
Session View Profiling Window Help
= i -h g =
2@ H2Z £ 8 % C & 7 *
Start < Save Session Star Stap Start Run GG Add e Wiew Help Take Mark e
Baokmatk

Center =P Gpapshot Semings | Recordings Recordings Teacking Settings Snapshot Heap

Profiiing

‘ Telemetries O No snapshot has been taken.

For a maximum of features:

Live memor
R

Press ﬁ to take a JProfiler heap snapshot

"
-ﬁ Heap Walker . The snapshot is displayed in this frame and saved together with profiing information from other
views
« For live profiing sessions, special features are available
I CPU views » Integrations with other views reguire this snapshot type
—
Threads Press * to indicate the starting point of a use case

« All objects that are currently on the heap will be marked as old

The three most common problems that can be solved with memory profiling are: Finding a
memory leak [p. 186], reducing memory consumption and reducing the creation of temporary
objects. For the first two problems, you will mainly use the heap walker, mostly by looking at
who is holding on to the biggest objects in the JVM and where they were created. For the last
problem you can only rely on the live views that show recorded allocations, because it involves
objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects" view shows you a histogram
of all classes and their instance counts. The data that is shown in this view is not collected with
allocation recording but by performing a mini heap snapshot that only calculates the instance
counts. The larger the heap, the longer it takes to perform this operation, so the update frequency
of the view is automatically lowered according to the measured overhead. When the view is not
active, no data is collected and the view does not generate any overhead. As with most views
that are updated dynamically, a Freeze tool bar button is available to stop updating the displayed
data.

60

@ Animated Bezier Curve Demo - JProfiler - O >
Session View Profiling Window Help
: Ly o= oy) — o
@O HZ £ 8 T C & L (7 n
Start Save Sestion Start Start Add Wiew Freeze | Show In Matk
Center =P Snapshot Setings | Recordings Recordngs Tracking | """ C Bockmark | EP Satings | T | iew [Hesp alker Cument
Session Profiiing v
Aggregation level: | () Classes -
” Telemetries
Name Instance Count Size
char[] I, 5,557 2,618kE A
":" Live memory java.lang. String I 22,317 535 k8
java.util.HashMapShode I 5501 178 kB
All Objects java.lang. StringBuilder I s 20 127kB
int[] [17,550 kB
Recorded Objects java.awt.Rectangle I 5097 163 kB
java.security. AccessControlContext I 4,751 190 kB
Allocation Call Tree java.lang.Object]] I 4,250 231kB
) jdk.internal. org.objectweb. asm, [tem I 2099 165 kB
Allocation Hot Spots byte[] W 2,554 619 kB
e sun.java2d. pipe.Region M 2454 98,160 bytes
aas [racker java.lang.Class[] M 237 64,880 bytes
java.lang.Class W 2345 270 kB
ﬁ Heap Walker java.lang.ref. WeakReference M 2340 74,880 bytes
java.awt.geom. AffineTransform W 2123 152kB
java.lang.Integer W 2050 32,800 bytes
I CPU views float(] W 1622 117 kB
sun.java2d.d3d.D3D5urfaceDatasDs... [l 1,620 32,400 bytes
java.util.Hashtable SEntry W 1393 44,576 bytes
-
T sun.java2d, SunGraphics2D W 1,220 278 kB
ey sun.java2d.StateTrackableDelegatesl W 1,224 19,584 bytes w
n Totak 158,372 25,502 kB
1 ITEEHEES Class View Filters ~ @
=
=1 @ 0Oactiverecordings | %) Auto-update 25 VM #1 00:06 & Profiing

The "Recorded objects" view, on the other hand, only shows the instance counts for objects that
have been allocated after you have started allocation recording. When you stop allocation
recording, no new allocations are added, but garbage collection continues to be tracked. In this
way you can see what objects remain on the heap for a certain use case. Note that objects may
not be garbage collected for a long time. With the Run GC tool bar button you can speed up this

process.

When looking for a memory leak, you often want to compare instance counts over time. To do
that for all classes, you can use the differencing functionality of the view. With the Mark Current
toolbar button, a Difference column is inserted and the histogram of the instance counts shows
the baseline values at the time of the marking in green color.

61

@ Animated Bezier Curve Demo - JProfiler - O >
Session View Profiling Window Help
™ = s % E— ry
@ HZ £ 8 T S & L o
Start Save Session Start Stop Statt Add Wiaw Freeze Show In Matk
Center =P Snapshot Setings | Recordings Recordngs Tracking | """ O Bockmark | EP Satings | TP iew Hesp Walker] Cument
Session Prafiling View specific
Aggregation level: | () Classes -
' Telemetries
Name Instance Count Difference Size
char[] I 5,245 +23 (+0 %) 637KE A
":'. Live memary java.lang. String I 5, 151 +23 (+0 %) 220 k8
java.awt.Rectangle I 150 +6,048 (+5400 %) 197 kB
All Objects java.util.HashMap$hode [s +4,026 (+197 %) 194 kB
java.security. AccessControlC... [N G 00 +5,544 (+3904 %) 227kB
Recorded Objects java.lang. Object[] I 094 +1,014 (+49 %) 159 kB
sun.javaz2d. pipe.Region I G073 +3,024 (+6171 %) 122kB
Allocation Call Tree int[] [A +1,514 (+139 %) 6,393kB
) java.awt.geom.AffineTransform N 2,550 +2,520 {+4200 %) 185 kB
Allocation Hot Spots java.lang.Class I G545 0 (0 %) 270 kB
java.lang. Integer [A +1,512 (+182 %) 37,456 bytes
Class Tracker
float[] . 2073 +2,016 (+3537 %) 150 kB
sun.java2d.d3d.D305urface... [N 2,052 +2,036 (+5363 %) 41,3650 bytes
b Heap Walker java.lang.ref.WeakReference I 1,608 +1,512 (+1575 %) 51,456 bytes
sun.java2d.StateTrackableDe... I 1,551 +1,512 (+3877 %) 24,816 bytes
sun.java2d. SunGraphics2D I 1536 +1,512 (+6300 %) 331kB
I CPL views java.util. Hashtable SEntry I 1,517 0(0%) 42,144bytes
java.util. ArrayList I 1257 +1,008 (+361 %) 30,888 bytes
java.util.HashMap I 1219 +1,008 (+478 %) 58,512 bytes
-
T java.security,ProtectonDoma... Il 1,053 +1,008 (+2240 %) 25,272 bytes
ey java.awt.EventQueuss3 1024 +1,008 (+6300 %) 24,576 bytes w
n Totak 94,098 +50,652 (+117 %) 10,532 kB
1 ITEEHEES Class View Filters ~ @
=
+ @ 0Oactiverecordings | %) Auto-update 25 VM #1 00:15 & Profiing

For selected classes, you can also show a time-resolved graph with the Add Selection to Class
Tracker action from the context menu.

Objects: All objects

. Telemetries
'!:l Live memaory
]

All Objects

<[] 3¢

0:10 0:20 0:30 0:40 1]

Show: o java.awt.Rectangle

20,000
Recorded Objects 4
Allocation Call Tree 4
Allocation Hot Spots 4

Class Tracker E

b Heap Walker
I CPU views 1

10,000

Threads

—
o
(@] Monitors & locks Class j wt.Rectangle: 18,157

It mm Class java.awt.Rectangle: 18, /® /e |"|

-

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an object is
allocated. It does not use the exact call stack, for example from the stack-walking API, because
that would be prohibitively expensive. Instead, the same mechanism is used that is configured
for CPU profiling. This means that the call stack is filtered according to the call tree filters [p. 46]
and that the actual allocation spot can be in a method that is not present in the call stack, because
it is from an ignored or compact-filtered class. However, these changes are intuitively easy to
understand: A compact-filtered method is responsible for all allocations that are made in further
calls to compact-filtered classes.

62

If you use sampling, the allocation spots become approximate and may be confusing. Unlike for
time measurements, you often have a clear idea of where certain classes can be allocated and
where not. Because sampling paints a statistical rather than an exact picture, you may see
allocation spots that are seemingly impossible, such as j ava. uti | . HashMap. get allocating
one of your own classes. For any kind of analysis where exact numbers and call stacks are
important, it is recommended to use allocation recording together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with allocation
counts and allocated memory rather than invocation counts and time. Unlike for the CPU call
tree, the allocation call tree is not displayed and updated automatically, because the calculation
of the tree is more expensive. JProfiler can show you the allocation tree not only for all objects,
but also for a selected class or package. Together with other options, this is configured in the
options dialog that is shown after you ask JProfiler to calculate an allocation tree from the current
data.

@ Allocation Options X

Type of Allocations to be Shown
() Allocations cumulated for all dasses
(®) Allocations for & selected dass or package

java.awt.Rectangle

Liveness type: | Live objects w 0

Update Options

[[] Auto-update the allocation views periodically 0

OK Cancel

A useful property of the CPU call tree is that you can follow the cumulated time from top to
bottom because each node contains the time that is spent in the child nodes. By default the
allocation tree behaves in the same way, meaning that each node contains the allocations that
are made by the child nodes. Even if allocations are only performed by leaf nodes deep down
in the call tree, the numbers propagate up to the top. In this way, you can always see which path
is worth investigating when opening branches of the allocation call tree. "Self-allocations" are
those that are actually performed by a node and not by its descendants. Like in the CPU call tree,
the percentage bar shows them with a different color.

’ Telemetries Recorded allocations of: |Live objects at 00:08, Al dasses Change
Aggregation level: @ Methods ~ | View mode: | = Tree ~

!3) I O3, 7% - 1,343 kB - 23,673 alloc, java.awt.EventDispatchThread.run
@- 58.5% - 833 kB - 12,557 alloc. bezier Bezier AnimsDemo. paint
= N 49.0% - 703 kB - 9,923 alloc. bezier.BezierAnim$Demo. drawDemo
B 39, 3% - 562 kB - 7,300 alloc, java awt, Graphics2D. fill
1 5,1% - 72,416 bytes - 876 alloc. java.awt.geom.GeneralPath, <init>

Live memor:
l" a Y

All Objects

14,7% - 67,744 bytes - 1,752 alloc. java.awt.Graphics2D.draw

08.0% - 114 kB - 1,752 alloc. bezier. Bezier AnimsDemo. createGraphics2D

i -ND)17.3% - 105 kB - 1,168 alloc. java.awt.image.Bufferedimage. creat=Graphics
: @ 1.0% - 14,043 bytes - 585 alloc. java. awt. Graphics.drawImage

- -(W)16,3% - 89,856 bytes - 2,662 alloc. bezier BezierAnim$Demo.run

Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker
]
ﬁ Heap Walker

I CPU views

Threads

e
N Moritors & locks
1 Call Tree View Filters v | @

-

In the allocation call tree, there are often a lot of nodes where no allocations are performed at
all, especially if you show allocations for a selected class. These nodes are only there to show

63

you the call stack leading to the node where the actual allocation has taken place. Such nodes
are called "bridge" nodes in JProfiler and are shown with a gray icon as you can see in the above
screen shot. In some cases, the cumulation of allocations can get in the way and you only want
to see the actual allocation spots. The view settings of the allocation tree offers an option to

show uncumulated numbers for that purpose. If activated, bridge nodes will always show zero
allocations and have no percentage bar.

-

' Telemetries Recorded allocations of: | Live objects at 00:08, Al dasses Change
Aggregation level: () Methods ~ | View mode: | = Tree “
=] m- 35.2% - 505 kB - 11,116 alloc, java.awt.EventDispatchThread.run
"' Live memory =3 @ 0.5% - 7,008 bytes - 292 alloc. bezier BezierAnim$Demo. paint
0.0% - 0 bytes - 0 alloc. bezier.BezierAnimsDema. drawDema
All Obects B 39, 3% - 562 kB - 7,300 alloc. java.awt.Graphics2D. fill
1 5,1% - 72,416 bytes - 876 alloc, java.awt.geom.GeneralPath, <init>
Recorded Objects ~N) 1 4.7% - 67,744 bytes - 1,752 alloc. java.awt. Graphics2D.draw
1 @ 0,7% - 9,344 bytes - 584 aloc, bezier.BezierAnimsDema.createGraphics2D
Allocation Call T H QI 7.3% - 105kB - 1,168 alloc. java.awt.image.Bufferedimage. createGraphics
EEl I == i @ 1.0% - 14,045 bytes - 585 alloc. java.awt. Graphics.drawImage
. . -(l) 0.0% -0bytes - 0 alloc. bezier. Bezieranim$Demo.run
Allocation Hot Spots
Class Tracker
]
'ﬁ Heap Walker
I CPU views
Threads
o
N Monitors & locks
1 Call Tree View Filters ~ | @
-

The allocation hot spots view is populated together with the allocation call tree and allows you
to directly focus on the methods that are responsible for creating the selected classes. Like the
recorded objects view, the allocation hot spots view supports marking the current state and
observing the differences over time. A difference column is added to the view that shows how
much the hot spots have changed since the time when the Mark Current Values action was invoked.
Because the allocation views are not updated periodically by default, you have to click on the
Calculate tool bar button to get a new data set that is then compared to the baseline values.
Auto-update is available in the options dialog but not recommended for large heap sizes.

Recorded allocations of: |Live objects at 00:28, All dasses | Change
' Telemetries
Aggregation level: @ Methods ~ | Hot spot options: | Self allocated memory ~
. Hot Spot Self Allocated Memary Allocations Difference
-I Live memory
. ¥, java.awt.Graphics2D.fil I 1 401kB (39 %) 18,133 +10,833 (+14...

[l

1, java.awt.EventDispatchThread run I 1,253 kB (35 %) 27,593 +16,482 (+14...

java.awt.image BufferedImage. createGraphics [l 260 kB (7 %) 2,896 +1,728 (+148...
java.awt.geom.GeneralPath. <init> W 175 kB (5 %) 2,172 +1,296 (+148...
java.awt.Graphics 2D, draw W 167kB (4 %) 4,344 +2,592 (+148...
bezier.BezierAnim$Demo.scheduleRepaint 1 106 kB (3 %) 2,981 +1,779 (+148...
java.awt.EventQueue,invokelater 1 104 kB (2 %) 2,889 +1,722 (+148...

All Objects
Recorded Objects

4 Alocation Call Tree

java.awt.Graphics.drawImage | 34,854 bytes {0 %) 1,452 +867 (+148 %)
Allocation Classes bezier, Bezier AnimsDemo. createGraphics 2D 23,168 bytes (0 %) 1,443 +864 (+148 %)
[H-- /& bezier.BezierAnimsDemo.paint 17,376 bytes (0 %) 724 +432 (+148 %)
Allocation Hot Spots [#-- /8 bezier.BezierAnim&Demo$ L. <init> 11,584 bytes (0 %) 724 +431(+147 %)
Class Tracker
’
'ﬁ Heap Walker
I CPU views
e
Threads
Hot Spot View Filters v | @
-

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify the class
or package whose allocations you want to see up-front. This works well if you already focused

64

on particular classes, but is inconvenient when trying to find allocation hot spots without any
pre-conceptions. One way is to start to look at the "Recorded objects" view and use the actions
in the context menu for switching to the allocation tree or allocation hot spot views for the
selected class or package.

Aggregation level: | () Classes

. Telemetries

MName Instance Count Size
. .
'I:I' Live memory java.utilHashMapsh B Show Selection In Heap Walker 1603 211kB
sun.javazd. pipe.Reg Show Allocation Tree for Selection 197$
5 java.security, Access) 197
All Cbjects java.ant.geom. AR Show Allecation Hot Spots for Selection 296 kB
Recorded Objects float[] Add Selection To Class Tracker 237k
int[] 920 kB
4 Alocation Call Tree java.lang.ref.Weaki = Show Scurce Fd 79,296 bytes
java.lang.Integer 39,552 bytes
: i Show Bytecode
Allocation Classes sun.java2d.SunGrap Y 533kB
Alocation Hot Spots java.awt.EventQueL & N Tl 39,552 bytes
java.awt.event Invg 105 kB
Class Tracker :ava.awt.geum.Paﬂ'l Remove Mark 52,736 bytes
java.awt.aeom.Poini 52,736 bytes
java.lang. Object]] Change Liveness Mode * 59,328 bytes
b Heap Walker java.security. Protec Reset Garbage Collecter Histary 39,552 bytes
java.util. ArrayList 39,552 bytes
I java.utilHashMap Sort classes > 79,104 bytes
CPU views java.util.IdentityHas . 65,920 bytes
sun.awt.EventQueur ’o a et 39,552 bytes
java.util.concurrent, 31,552bytes w
b= T Export View Ctrl+R v
Threads Totak 4,052 kB
— —
Class View Filtel View Settings Ctrl+T ~ | @

Another way is to start with the allocation tree or allocation hot spots for all classes and use the
Show classes action to show the classes for a selected allocation spot or allocation hot spot.

Profiler —] *
elp
N IEEYEE I E Y 20 X d o
1 ”
8 8B % C 4% B & ©
Start Stop Sham Add Wiew Stop Show Show In Reset
ordings Recordings Tracking | 7" &% mogkmark | EP Sawings | HER ey CRlTUlAte Loy Bk Fomeard e Wilker P0AbE
E | Show Classes Ctrl+Alt+C |
tecorded allocations of: | Live objects at 00:06, All dasses Collapse Recursions Ctrl+Alt+L
\ggregation level: (@ Methods Calculate Cumulated Qutgoing Calls Cri+Alt+G [ree -
N 53.7% - 1,343 kB - 23,673 alloc. java.awt. EventDispatchThreal Calculate Backtraces To Selected Method Ctrl+Alt+B
=8 @— 58.5% - 838 kB - 12,557 alloc. bezier. Bezier Anim§Demo.paint
(=--() m— 45,0 3 kB - 9,928 alloc. bezier BezierAnim$Demo. drawDemo
ml] 7,30
1 5,1% - 72,416 bytes - 876 alloc, geom, GeneralPath, <init>
i) 1 4.7% - 67, 744 bytes - 1,752 alloc. java.awt.Graphics2D.draw
@ 13.0% - 114 kB - 1,752 alloc. bezier. BezierAnim$Demo. createGraphics2D
) 7.3% - 105 kB - 1,168 alloc. java.awt.image.Bufferedimage. createGraphics
H O 1.0% - 14,048 bytes - 585 alloc. java.awt. Graphicz.drawlmage
(DI 6.3% - 89,856 bytes - 2,662 alloc, bezier, BezierAnimsDemo.run
Call Tree View Filters v | @
+ @ 1active recording VM #1 00: 14 4 Profiing

The histogram of the allocated classes is shown as a call tree analysis [p. 163] . This action also
works from other call tree analyses.

65

-

” Telemetries 7300 instances in 17 dasses have been allocated at the selected call stack x &R (@

Recorded allocations of: |Live objects at 00:06, Al dasses

'l:l' Live memory Aggregation level: @ Methods
Allocation spot: java.awt.Graphics2D. fill — bezier.BezierAniméDema.drawDemo — bezier Bezier A | Show more
All Objects
Name Instance Count Size
RecededUilecs java.util HashMapshiode S 752 56,064 bytes .
4 Allocation Call Tree |.nt[] I 5o 315ke
java.awt.geom.AffineTransform I 5G4 42,048 bytes
Allocation Classes java.awt.geom.Point2D$Double I 5G4 18,688 bytes
float[] Il 52 11,680 bytes
Allocation Hot Spots java.awt.GradientPaintContext I G2 18,688 bytes
java.awt.Rectangle I =2 9,394 bytes
Class Tracker java.awt.RenderingHints B s 4,672 bytes
java.awt.geom.Path2DSFloatSTxIterator I ez 9,394 bytes
2 Heap Waker java.awt.geom.Point2D$Float I =2 7,008 bytes
ﬁ java.awt.geom.Rectangle 2D Float Il 52 9,344 bytes
java.lang.Integer I ez 4,672 bytes
I . java.lang.ref. WeakReference Il 2 9,394 bytes
java.util. HashMap Il 52 14,016 bytes
java.util.HashMap$hode[] I ez 14,016 bytes
— sun.java2d. loops. GraphicsPrimitiveMar SPrimitiveSpec I 22 4,672bytes ¥
T Total: 7,300 562 kB
- Class View Filters ~ | @

The classes analysis view is static and is not updated when the allocation tree and hot spot views
are recalculated. The Reload Analysis action will first update the allocation tree and then recalculate
the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on garbage
collected objects. This is useful when investigating temporary allocations. Allocating a lot of
temporary objects can produce significant overhead, so reducing the allocation rate often
improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness selector to
either Garbage collected objects or Live and garbage collected objects. The options dialog of the
allocation call tree and allocation hot spot views has an equivalent drop-down.

Profiler - O x
elp
s w = y — s = Y

BRI R o)
8 T Ch E a @
Start Stop Start Audd Wie Stop Freeze Show In Live Mark Reset
fondings Recordings Tracking | "™ %% Bookmak | S Slmings | P | mamory | wiew Hasp ialker] objects | cumsnt ac bistory

Prefiing) Live Objects

\goregation level: | () Classes T Garbage Collected Objects e
Name Instance Co .-S} Live And Garbage Collected Objects Size
java.awt.Rectangle I 1 22,512 bytes
iava.util, HashMapShode 569 18,208 bytes
java, security. AccessControlContext E=A 17,280 bytes
sun.java2d.pipe.Region e 17,240 bytes
iava.awt.geom, AffineTransform [KN 25,704 bytes
fioat]] k] 20,448 bytes
java lang.ref.WeakReference I 6,880 bytes

However, JProfiler does not collect information for garbage collected objects by default, because
the data for live objects only can be maintained with far less overhead. When switching the
liveness selector to a mode that includes garbage collected objects, JProfiler suggests to change
the recording type. This is a change in the profiling settings, so all previously recorded data will
be cleared if you choose to apply the change immediately. If you would like to change this setting
in advance, you can do so in the "Memory profiling" section of the profiling settings.

66

@ Profiling Settings x
Method Call Recording CPU Profiing Probes & JEE MEF"DFYPTUﬁh”Q Thread Profiing Miscellaneous

Recording Type

Record allocations of: | (@) Live objects (7]

() Live and GCed objects without dass resolution |)

(0 Live and GCed objects (7]

Allocation times

[Record object allocation times {g)

General Settings Cancel

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example, the
sizes that are displayed in the recorded objects, allocation tree and allocation hot spot views are
shallow sizes. They just include the memory layout of the class, but not any referenced classes.
To see how heavy objects of a class really are, you often want to know the retained size, meaning
the amount of memory that would be freed if those objects were removed from the heap.

This kind of information is not available in the live memory views, because it requires enumerating
all objects on the heap and performing expensive calculations. That job is handled by the heap
walker. To jump from a point of interest in the live memory views into the heap walker, the Show
in Heap Walker tool bar button can be used. It will take you to the equivalent view in the heap
walker.

Profiler — O >
elp

) L] e + — 0 & P

4 1 . {
8B T oA | | @ @)
Start Stop Star Add Wiew Stop Unfreeze| Show In Live Mate Reset
rdings Recordings Tracking | 5% ockmark | S cowrgs | PP | Marnoee | Wiew [Hesp Waker| Objets ument 0 istory

Profiling View speciic

\ggregation level: @ Classes ~
Name Instance Count = Size
2va 2wt Reciangle [
iava,util HashMapShiode I -, 555 146 kB
java,security. AccessControlContext I G432 137kB
sun java2d.pipe Region e —— 137k8
java.awt.geom.AffineTransform [iy 205 kB
float[] I . 254 164kB
java.lang.ref.WeakReference I (715 54,880 bytes

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will ask you
whether to use the existing heap snapshot.

67

@ Iprofiler 4

A Heap Dump Has Already Been Taken

‘Where do you want to show the selected objects?

% Show in current heap dump

Selected objects were created after the heap dump was
taken will not be found in the current heap dump.

% Show in new heap dump
If you select this option, the current heap dump will be
discarded.
Selected objects that have already been garbage collected

will not be found in the new heap dump.

Cancel

In any case, it is important to understand that the numbers in the live memory views and in the
heap walker will often be very different. Apart from the fact that the heap walker shows a snapshot
at a different pointin time than the live memory views, it also eliminates all unreferenced objects.
Depending on the state of the garbage collector, unreferenced objects can occupy a significant
portion of the heap.

68

The Heap Walker

Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot, because
it is not possible to ask the JVM what the incoming references to an object are - you have to
iterate over the entire heap to answer that question. From that heap snapshot, JProfiler creates
an internal database that is optimized for producing the data required for serving the views in
the heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF heap snapshots.
JProfiler heap snapshots support all available features in the heap walker. The profiling agent
uses the profiling interface JVMTI to iterate over all references. If the profiled JVM is running on
a different machine, all information is transferred to the local machine and further calculations
are performed there. HPROF snapshots are created with a built-in mechanism in the JVM and
are written to disk in a standard format that JProfiler can read.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or an
HPROF heap snapshot should be created. By default, the JProfiler heap snapshotis recommended.
The HPROF heap snapshot is useful in special situations that are discussed in another chapter
[p.179].

’ Telemetries O Ho snapshot has been taken.

For a maximum of features:

‘i' Live memory
“‘ Press ﬁ to take a JFrofiler heap snapshot
’
ﬁ Heap Walker . The snapshot is displayed in this frame and saved together with profiling information from other
views
« For live profiing sessions, special features are available
I CPU views « Integrations with other views reguire this snapshot type
— . .
Threads Press * to indicate the starting point of a use case
——
« All objects that are currently on the heap will be marked as old
r? Monitors & locks # When you take the next heap snapshot, new and old objects will be listed separately in the header
= You can select new or old objects only, making it easy to track down memory leaks
; Databases
For a minimum of overhead:
x
@ JEE &Probes Press | @ | to take an HPROF heap snapshot
-~ « The snapshot is saved separately and displayed in another frame
Wgey Mobeans « Mot all features are available

» Memory and CPU overhead in the profiled VM are lower than for the JProfiler snapshot

Selection steps

The heap walker consists of several views that show different aspects of a selected set of objects.
Right after you take the heap snapshot, you are looking at all objects on the heap. Each view has
navigation actions for turning some selected objects into the current object set. The header
area of the heap walker shows information on how many objects are contained in the current
object set.

69

© Casses Il Allocations ™ Biggest Objects S References (©) Time 3} Inspections =ZGr

Current object set: 43,544 objects in 1,010 classes
1 selection step, 3,075 kB shallow size

O Classes ~ Use.. = (9 Group By Class Loaders Calculate estimated retained sizes

Name Instance Count = Size

char(] L — 595 kB o
I < 474 M7 kR

imva lann Strinn

Initially, you are looking at the "Classes" view which is similar to the "All objects" view in the live
memory section [p. 60] . By selecting a class and invoking Use->Selected Instances, you create a
new object set that only contains instances of that class. In the heap walker, "using" always means
creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead, JProfiler
suggests another view with the "New object set" dialog. You can cancel this dialog to discard the
new object set and return to the previous view. The outgoing references view is suggested, but
you could also choose another view. This is just for the initially displayed view, you can switch
views in the view selector of the heap walker afterwards.

@ New Object Set X

A new object set has been created. It consists of 3,004 instances of
java.util.HashMap$Node.

Please choose the initial view for the object set:

() Classes o This view mode of the references view
shows trees of outgoing references from
() Allocations a the single instances in the current object

set. You can navigate to other instances in
Cumulated allocation tree the reference tree.

(O Biggest objects IZE
(@) References 3
Outgoing references ~
(O Time (D)
(O Inspections i

[[] Do not shaw this dialog again

Cancel

The header area now tells you that there are two selection steps and includes links for calculating
the retained and deep sizes or for using all objects that are retained by the current object set.
The latter would add another selection step and suggest the classes view because there would
likely be multiple classes in that object set.

70

£ B O A% L @ 0l OO |4|C

Statt Stop Stan Add Wiew Take Mark Go Ta | Show
ecordings Recordings Tracking | 5% pockmark | B cowngs | PP | e Hesp Bk [Forward || 2y [selection
Profiling View speciic
O Classes il Mlocations ™ Biggest Objects i References (&) Tme 4 Inspections =G

Current object set: 3,004 instances of java.uti.HashMap$Node
2 selection steps, 96 kB shallow size, [Ealculate retained and deep sized Pse retained objectd

Qutgoing references w Use ... v Apply filter ... + Show In Graph | | a9

Object Retained Size « Shallow Size Allocation Time (hi:m:s)

-l java.util. HashMap&hode (0x54c) 52,548 bytes 32bytes ERFY
java.util, HashMapSMode | 35,846 bytes 32 bytes fa
java.util, HashMapSMode | 5,344 bytes 32 bytes fa
java.util. HashMapshlode | 1,496 bytes 32bytes a
java.util, HashMapSMode | 1,480 bytes 32 bytes fa
java.util, HashMapSMode | 1,032 bytes 32 bytes fa

- java.utl HashMap&hiode | 1,000 bytes 32bytes a

ol java.util, HashMap$hode (0 912 bytes 32 bytes fa

i P 4 . .
Selection step 2 : Class ~

java,util. HashMapshode
3,004 instances of java,util. HashMap$hode

Selection step 1 : All objects after full GC, retaining soft references
43,544 objects in 1,010 dasses

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking on
the hyperlinks will take you back to any selection step. The first data set can also be reached
with the Go To Start button in the tool bar. The back and forward buttons in the tool bar are
useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heap walker contains five views that show different information
for the current object set. The first one of those is the "Classes" view.

The classes view is similar to the "All objects" view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show estimated
retained sizes for classes. This is the amount of memory that would be freed if all instances of
a class were removed from the heap. If you click on the Calculate estimated retained sizes hyperlink,
a new Retained Size column is added. The displayed retained sizes are estimated lower bounds,
calculating the exact numbers would be too slow. If you really need an exact number, select the

class or package of interest and use the Calculate retained and deep sizes hyperlink in the header
of the new object set.

Q Classes il Allocations .. Biggest Objects x References o Time {D:} Inspections =<: Gh

Current object set: 43,544 objects in 1,010 classes
1 selection step, 3,075 kB shallow size

@ Classes ~ Use... v (3 Group By Class Loaders alculates estimated retained sized

MName Instance Count = Size

char[] I 52 595 kB A
java.lang.String I 424 202 kB
java,util, HashMapShode I 004 96,128 bytes
java.lang.Class I G4 746 kB
iava.lana.Obiectl 1 I 1.530 118 kB

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated j ava. | ang. Cl ass objects, or all retained objects. Double-clicking
is the quickest selection mode and uses the selected instances. If multiple selection modes are
available, as in this case, a Use drop-down menu is shown above the view.

When solving class loader-related problems, you often have to group instances by their class
loader. The Inspections tab offers a "Group by class loaders" inspection that is made available

71

on the classes view, because it is especially important in that context. If you execute that analysis,
a grouping table at the top shows all class loaders. Selecting a class loader filters the data
accordingly in the view below. The grouping table remains in place when you switch to the other
views of the heap walker until you perform another selection step. Then, the class loader selection

becomes part of that selection step.

Q asses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy
Object groups:
Priority « Class Loader Instance Count Shallow Size
Default dass loader 43, 517 3,071kB
2 sun.misc.Launcher $AppClassLoader (0xdb3) 3,616 bytes
3 sun.reflect.DelegatingClassLoader (0x3065) 2 336 bytes
4 sun.reflect.misc. MethodUtil (0x304e) 1 320 bytes

Current object set: 43,517 objects in 1,002 classes
3 selection steps, 3,071 kB shallow size, Calculate retsined and deep sizes Use retained obijects

@ Classes ~ Use.. = Group By Class Loaders Calculate estimated retained sizes
Mame Instance Count Size
char(] L ——e 595K8
ava lang.5tring I G424 202k8
java.util.HashMap&hode I G004 96,128 bytes
java.lang.Class I 2 G25 744kB
ava.lang.Object[] _ 1,930 118 kB w
i~ okl Ll AT o A% ANA bt
Tutat 43 51? 3,071kB

~@

Class View Filters

Allocation recording views

The information where objects have been allocated can be important when narrowing down
suspects for a memory leak or when trying to reduce memory consumption. For JProfiler heap
snapshots, the "Allocations" view shows the allocation call tree and the allocation hot spots for
those objects where allocations have been recorded. Other objects are grouped in the "unrecorded
objects" node in the allocation call tree. For HPROF snapshots, this view is not available.

D) Classes Wl Alocations ™ Biggest Objects] References (&) Time 43 Inspections =2Gh

Current object set: 43,544 objects in 1,010 dlasses
1 selection step, 3,075 kB shallow size

Cumulated allocation tree ~ | of | () Methods e _o"I Usge Selected |

I 35.0% - 2,923 kB - 41,165 alloc. unrecorded objects
14.9% - 152 kB - 2,370 alloc. java.awt. EventDispatchThread.run
-Ol 4,9% - 151 kB - 2,353 alloc, bezier,Bezier AniméDemo.paint
E-QH.Q 150 kB - 2,349 alloc, bezier BezierAnimSDemo, draADemo
5 Path, <init>

.Map.pu
java.lang.Long. valueOf
0. D"f -64 byhes 2 alloc, java.awt Graphics2D, draw
0.0% - 32 bytes - 1 alloc. java.awt. Graphics2D, fill
0.0% - 328 bytes - 3 alloc, bezier.BezierAnimsDemo. createGraphics2D
E 0.0% - 16 bytes - 1 alloc. java.awt.Graphics.drawImage
% 0.0% - 128 bytes - 3 alloc. bezier. BezierAnim$Demo.run
0.0% - 264 bytes - & alloc. direct calls to methods of unprofiled dasses

Like in the classes view, you can select multiple nodes and use the Use Selected button at the top
to create a new selection step. In the "Allocation hot spots" view mode, you can also select nodes
in the back traces. This will only select objects in the associated top-level hot spot that have been
allocated on a call stack that ends with the selected back trace.

72

Another piece of information that JProfiler can save when recording allocations is the time when
an object was allocated. The "Time" view in the heap walker shows a histogram of the allocation
times for all recorded instances in the current object set. You can click and drag to select one or
multiple intervals and then create a new object set with the Use Selected button.

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 5,618 instances of java.awt.geom.GeneralPath
2 selection steps, 179 kB shallow size, Calculate retsined and deep sizes Use retsined objects

4,590 new instances (81.7%) since the last heap dump Use new Use old
Use Selected ,Q 2 |l | x

Unrecorded objects: 559
Click and drag to select objects

200

100 0:35.0 [Jan 29, 2018 3:01:08PM] = 1.0s

Instances: 198

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 41] . All
objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the reference
views. However, allocation time recording is not enabled by default. You can switch it on directly
in the time view or edit the setting on the Memory Profiling tab of the profiling settings dialog.

Biggest objects view

The biggest objects view shows a list of the most important objects in in the current object set.
"Biggest" in this context means the objects that would free most memory if they were removed
from the heap. That size is called the retained size. In contrast, the deep size is the total size
of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are retained by
this object. In this way, you can recursively expand the tree of retained objects that would be
garbage collected if one of the ancestors were to be removed. This kind of tree is called a
"dominator tree". The information displayed for each object in this tree is similar to the outgoing
reference view except that only dominating references are displayed.

73

O Classes Wl Allocations .. Biggest Objects i References OTIIT\E @ Inspections nc Grap ¥

Current object set: 41,777 objects in 1,004 dasses
1selection step, 2,964 kB shallow size

No grouping v || E Tree v Uge ... w =g Show In Graph i;é‘} L= @
Object Retained Size =
= (¥ bedier.BezierAnim$Demo (0x4503) I, 155 kB (12 %) A

[I— 357 kB (99, 7%%) bimg Q sun.awtimage.OffScreenImage

N 56 kE (99.5%) raster (de @ sun.awtimage.IntegerinterleavedRaster
- — 355 kB (99.5%) data (aster) @y intl]

ag Anather 3 instances with 3 total retained size of 264 bytes and a maximum single retained size of 144 bytes

3‘: Another 4 instances with a total retained size of 600 bytes and a maximum single retained size of 288 bytes

aé Another 12 instances with a total retained size of 504 bytes and a maximum single retained size of 80 bytes

bezier, BezierAnim (0 I - 1o kE (7 o)

com.jprofiler.agent.d.a I 52,336 bytes (2 %)
I3 sun.awt. AppContext (0 I 5,854 bytes (2 %)
3 sun.java2d.loops.GraphicsPrimitiveMar (0x37) I 41,540 bytes (1 %)

I 37,712 bytes (1 %)

:G’ sun.misc.FDBigInteger (I
< I 35,296 bytes (1 %)

) sun.swing.CachedPainte:
) sun.awt.ExtendedkeyCode: I 30,336 bytes (1 3%)

W sun.security.provider, Sun | Il 25,336 bytes (0 %)

&) com.jprofier.agent. triggers. TriggerLog (0x31) Il 25,216 bytes (0 %)

W java.io PrintStream (0x6374) Il 25,056 bytes (D 5%)

j java.io,PrintStream | 2) Il 25,056 bytes (0 %%)

ﬁl java.lang.ProcessEnvironment (0x109) Il 23,335 bytes (0 %)

@ java.lang.invoke.MethodHandleImplsLazy (0x355) W 15,808 bytes (0 %)

W sun.misc.Launcher SExtClassLo,])] Wl 15,360 bytes (0 %)

W sun.awt. Win32FentManager (0 j] W 14,752 bytes (0 %)

W java.lang.invoke MethodTypesConcurrentieakInternSet (0x3524) W 13,400 bytes (0 %)

B java.io.File (0x41) M 13,134 bytes (0 %)

ﬁ] java.nio,charset.Charset (0x518) W 12,256 bytes (0 %)

B java.security. Security (01 W 11,552 bytes (0 %)

{3 java.lang.invoke Lambd W 11,344 bytes (0 %)

- I8 java.lang.System (0x190) B 10,992 bytes (0 %) v

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

[GC root]

y

[Object A J

dominates directly dominates directly

([ObjectBi [objectB2 |

~—
dominates indirectly

l€

[objectc)

Object A dominates objects B1 and B2 and it does not have a direct reference to object C. Both
B1 and B2 reference C. Neither B1 nor B2 dominates C, but A does. In this case, B1, B2 and C are
listed as direct children of A in the dominator tree, and C will not be listed a child of B1 and B2.
For B1 and B2, the field names in A by which they are held are displayed. For C, "[transitive
reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what percentage
of the retained size of the top-level object is still retained by the target object. The numbers will
decrease as you drill down further into the tree. In the view settings, you can change the
percentage base to the total heap size.

74

The dominator tree has a built-in cutoff that eliminates all objects that have a retained size that
is lower than 0.5% of the retained size of the parent object. This is to avoid excessively long lists
of small dominated objects that distract from the important objects. If such a cutoff occurs, a
special "cutoff" child node will be shown that notifies you about the number of objects that are
not shown on this level, their total retained size and the maximum retained size of the single

objects.

Instead of showing single objects, the dominator tree can also group biggest objects into classes.
The grouping drop-down at the top of the view contains a check box that activates this display
mode. In addition, you can add a class loader grouping at the top level. The class loader grouping
is applied after the biggest objects are calculated and shows who loaded the classes of the biggest
objects. If you want to analyze the biggest objects for one particular class loader instead, you
can use the "Group by class loader" inspection first.

O Classes ‘ Allocations .'.. Biggest Objects x References ®TII1’|E ﬁ- Inspections -: Grap ¥

Current object set: 41,777 objects in 1,004 dlasses
1 selection step, 2,964 kB shallow size

No grouping ~ |_::— Tree v H Uge ... w | =g Show In Graph ﬂ
[Group by dass loader | &) Retained Size v
45b3) 358kB(12%) »
Group by dass ’
[Group by (7] 212kB (7 %)
com.jprofiler.agent.d.a [0x5c4) I 2,335 bytes (2 95)
. sun,awt. AppContext (0x3035) I 5C 554 bytes (2 %)

.- eun.iavadd.Inane. GranhicsPrimitiveMar (705371 W 41 .R40 hutes (1 96)

The view mode selector above the biggest objects view allows you to switch to an alternate
visualization: A tree map that shows all dominated objects as a set of nested rectangles.

° Classes ‘ Allocations .'.. Biggest Objects x References ®'ﬁme ﬁ Inspections -C Grag ¥

Current object set: 41,777 objects in 1,004 dasses
1selection step, 2,964 kB shallow size

|Nagrouping v||ﬁ TreeMava Use ... = | -(:ShawInGraph # '.
A [iner

'. Object ID: ((xaB25)356 kB (12.0%)
Depth: 4 levels

int[]

Depth: 2 I 20 levels The total displayed percentage of the heap is 40.0 %

In the tree map, each rectangle represents a dominated object with an area proportional to its
retained size. In contrast to the tree, the tree map gives you a flattened perspective of all leafs
in the dominator tree. If you are mostly interested in big arrays, you can use the tree map in

75

order to find them quickly without having to dig into the branches of the tree. Also, the tree map
gives you an overall impression of the relative importance of dominated objects and the object
size distribution on the heap.

At the bottom right of the tree map you can see the total percentage of the entire heap that is
represented by the tree map. If you have not zoomed in, the remaining part of the heap is
dominated by objects that have not made it into the list of biggest objects due to the internal
threshold for retained sizes.

Reference views

Unlike the previous views, the reference views are only available if you have performed at least
one selection step. For the initial object set these views are not useful, because the incoming
and outgoing reference views show all individual objects and the merged reference views can
only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE. When
opening an object, you can see the primitive data and references to other objects. Any reference
type can be selected as a new object set and you can select multiple objects at once. Like in the
classes view, you can select retained objects or associated j ava. | ang. O ass objects. If the
selected object is a standard collection, you can also select all contained elements with a single
action. For class loader objects, there is an option to select all loaded instances.

O Classes Wl Allocations nﬂ Biggest Objects % References O Time @ Inspections K: Gr

Current object set: 3,004 instances of java.uti.HashMap$Node
2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Qutgoing references ~ Apply filter ... - (: Show In Graph {é}] I
Object Selected Objects zEe - Shallow Size Allocation Time (hi:m:s)
= - java.util HashMap&hiode (0x Selected javalang.Class Objects 52,548 bytes 32 bytes nfa ~

- hash = 1123014945

=8key = java.lang.StringBu Retained Objects

- count

; +-value (d
| E-value Q) javax.swing.UIManager SLAFState |
- o

(-~ (@ java.utl. HashMapShiode (0) 35,548 bytes 32 bytes
- java.utl, HashMapShiode |) 5,394 bytes 32 bytes
Lo P 4 . . b
~
Selection step 2 : Class
java.util. HashMapshode
3,004 instances of java.util. HashMaps$hode
Selection step 1 : All objects after full GC, retaining soft references
43,544 objects in 1,010 dasses v

Fields with null references are not shown by default because that information may be distracting
for a memory analysis. If you want to see all fields for debugging purposes, you can change this
behavior in the view settings.

76

@ Heap Walker View Settings X

Allocations
Time Graph

General d
Biggest Objects

Size Scale For Cumulated Views

@ Automatic @@ (O Mixedunits (OMB (OB (O bytes
Instance Views

Show object IDs

Show dedaring dass if different from actual dass (7]

ID Show fields with null values in outgeing references view Io

Instance block size: 100 5| @

Common Options

Compact representation of incoming references to collections £

o

Beside the simple selection of displayed instances, the outgoing references view has powerful
filtering capabilities [p. 183] . For live sessions, both outgoing and incoming reference views have
advanced manipulation and display functionality that is discussed in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why an
object is not garbage collected, the Show Paths To GC Root button will find reference chains to
garbage collector roots. The chapter on memory leaks [p. 186] has detailed information on this

important topic.

o Classes . Allocations .. Biggest Objects x References OTImE

Current object set: 683 instances of java.awt.geom.GeneralPath
2 selection steps, 21 kB shallow size, Calculate retained and deep sizes Use retained objects

@ Inspections -C Grag ¥

Incoming references v Use..w w3 ShowInGraph | |35k (%=1 | @ | L ShowPaths ToGCRoot |
- Object Retained Size Shallow Size
(=] Ci java.awt.geom. GeneralPath (Ox46b0) 248 bytes

BO value of java,util. HashMap$Node
BO next of java.util. HashMap$hode
(=3 O element of java.util. HashMapsNode[]
- table of java.uti.HashMap
G leakMap of bezier. Bezier Anim

=] 0 target of sun.awt.windows. WPanelPeer (declared by sun.awt.wind
@3 muglobal reference

=) this$0 of bezier BezierAnimsDemo
B Oi java stack of Thread-2 in bezier . Bezieranim$Demao.run{)

=¥ valédemo of bezier. BezierAnims1
E}O windowlListener of java.awt.Frame (dedared by java.awt.Window)

- O tic currentFocusCycleRoot of dass java.awt.KeyboardFocusManager
) java.awt.geom. GeneralPath (0 245 bytes
Ci java.awt.geom,GeneralPath 248 bytes
G java.awt.geom, GeneralPath 248 bytes
) java.awt.geom.GeneraPath 245 bytes
Ci java.awt.geom,GeneralPath 248 bytes
G java.awt.geom, GeneralPath 248 bytes
) java.awt.geom.GeneraPath 245 bytes
Ci java.awt.geom,GeneralPath 248 bytes
) java.awt.geom. GeneralPath 243 bytes
) java.awt.geom.GeneraPath 245 bytes
Ci java.awt.geom,GeneralPath 248 bytes
[java.awt.geom. GeneralPath 243 bytes
-) java.awt.geom. GeneralPath 243 bytes
G java.awt.geom. GeneralPath 248 bytes
- [java.awt.geom.GeneralPath (0 243 bytes

32bytes

32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes
32 bytes

Allocation Time (h:m:s)

nfa [

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you the
merged outgoing and incoming references of all objects in the current object set. By default, the
references are aggregated by classes. If instances of a class are referenced by other instances

of the same class, a @ special node is inserted that shows the original instances plus the instances

77

from these class-recursive references. This mechanism automatically collapses internal reference
chains in common data structures, such as in a linked list.

You can also choose to show the merged references grouped by field. In that case, each node
is a reference type, such as a particular field of a class or the content of an array. For standard
collections, internal reference chains that would break cumulation are compacted, so you see
reference types like "map value of java.lang.HashMap". Unlike for class aggregation, this
mechanism only works for explicitly supported collections from the standard library of the JRE.

In the "Merged outgoing references" view, the instance counts refer to the referenced objects.
In the "Merged incoming references" view, you see two instance counts on each row. The first
instance count shows how many instances in the current object set are referenced along this
path. The bar icon at the left side of the node visualizes this fraction. The second instance count
after the arrow icon refers to the objects that hold the references to the parent node. When
performing a selection step, you can choose whether you want to select objects from the current
object set that are referenced in the selected way or if you are interested in the objects with the
selected reference - the reference holders.

D) Classes Wl Alocations ™ Biggest Objects] References (&) Time 3% Inspections =2Gh

Current object set: 3,004 instances of java.uti.HashMap$Node
2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged incoming references | Aggregate by dass ~

£ SN 77% - 2,338 instances (3 140 instances of jav| Referenced Objects ~
= M 72% - 2,168 instances Y 138 instances of |

SR 26% - 796 instances & 1 instance of bezie Unreferenced Objects

+ o - 795 instances 9 1instance of jay Reference Holders

o - 795 instances 3 1instance of be! §

b - 796 instances 0 1instance of sun.awt.image.OffScreenlmage
& - 796 instances LY 1instance of java.awt.LightweightDispatcher
o - 795 instances (% 1instance of sun.awt.windows.WPanelPeer

o - 796 instances % 3 instances of java.utilHashtable$Entry

o - 795 instances (3 2instances of java.lang.Object]]

- 796 instances (9 linstance of bezier.BezierAnim$1

796 instances (3 1instance of java.awt.BorderLayout

M 16% - 485 instances (Y 45 instances of java.utilHashSet

4 4% - 148 instances (Y 18 instances of java.utiLHashMap$KeySet

1 4% - 125 instances (3 1instance of sun.awt.resources.awt

-1 3% - 28 instances (3 2instances of java.util.HashMap$EntrySet

-1 3% - @8 instances (3 linstance of sun.awt.windows.WToolkit

A 3% - 86 instances (3 dass sun.awt.ExtendedKeyCodes

1 3% - 96 instances (9 linstance of sun.awt.windows.WDesktopProperties

1 1% - 49 instances Y dass java.security.Provider

-1 1% - 41 instanres LA dass suniava?dloons.SurfaceTune

With the "Merged dominating references" view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage collected.
The dominating reference tree can be interpreted as the merged inverse of the dominator tree
in the biggest objects view, aggregated for classes. The reference arrows may not express a
direct reference between the two classes, but there may be other classes in between that hold
non-dominating references. In the case of multiple garbage collector roots, no dominating
references may exist for some or all objects in the current object set.

78

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 3,004 instances of java.uti.HashMap$Node
2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references + Objects to GC roots Use ... w [7]

£ 77% - 2,338 instances Ao askla L la util HashMapshode]] ~
) BN 72% - 2,168 instan(GC roots o objects java.utilHashMap
M 26% - 796 instances () 1instance of bezier.BezierAnim
16%; - 485 instances (¥ 45 instances of java.utilHashSet

=5l 4% - 125 instances (Y 1instance of sun.awt.resources.awt

[SR] 4% - 125 instances & dass java.awt.Toolkit
b 4% - 125 instances (3L GCroot

-1 3% - 98 instances linstance of sun.awt.windows.WToolkit

-1 3% - 96 instances dass sun.awt.ExtendedKeyCodes

1 3% - 96 instances 1instance of sun.awt.windows.WDesktopProperties

-1 1% - 49 instances dass java.security.Provider

-1 1% - 41 instances dass sun.java2d.loops.SurfaceType

-1 1% - 36 instances 20 instances of java.beans.PropertyChangeSupport$PropertyChangelistenerMap

-1 1% - 32 instances dass sun.font.TypelFont
0% - 28 instances 18 instances of java.security.Provider§Service
0% - 26 instances dass sun.awt.windows.WFontConfiguration

- 0% - 26 instances dass sun.util.logging.PlatformLogger

- 0% - 20 instances iinstance of sun.awt.Win32FontManager e

neL . 1a 1 inctanra of con e o WWEARH,

All references may be transitive ()

By default, the "Merged dominating references" view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots. Sometimes,
the reference tree may lead to the same root objects along many different paths. By choosing
the "GC roots to objects" view mode in the drop down at the top of the view, you can see the
reverse perspective where the roots are at the top level and the objects in the current object set
are in the leaf nodes. In that case, the references go from the top level towards the leaf nodes.
Which perspective is better depends on whether the references you want to eliminate are close
to the current object set or close to the GC roots.

Inspections

The "Inspections" view does not show data by itself. It presents a number of heap analyses that
create new object sets according to rules that are not available in the other views. For example,
you may want to see all objects that are retained by a thread local. This would be impossible to
do in the reference views. Inspections are grouped into several categories and explained in their
descriptions.

79

O Classes i Allocations .. Biggest Objects i References ®TIIT|E @- Inspections -c Grap ¥

Current object set: 41,777 objects in 1,004 dlasses
1 selection step, 2,964 kB shallow size

Available Inspections:

> Duplicate objects Desaription

Find duplicate jawa.lang.String objectsin the current object set,
Duplicate strings
After the inspection is calculated, you will see a statistics table at the top of all heap
Duplicate primitive wrappers walker view where you can select each duplicate string value and analyze the

corresponding string objects separately,
Duplicate arrays

Mote: If no java.lang.String objects are contained in the current object set, the

:I Collections & Arrays inspection will return the empty object set.
N Reference & field analysis Configuration
Minimum length: 0%
(& Weak references
Status
W Stackreferences
e Mot calculated @ Calculate inspection and create a new object set

Thread locals
@ Classes & Class loaders

e Custom inspections

An inspection can partition the calculated object set into groups. Groups are shown in a table
at the top of the heap walker. For example, the "Duplicate strings" inspection shows the duplicate
string values as groups. If you are in the reference view, you can then see thej ava. | ang. Stri ng
instances with the selected string value below. Initially, the first row in the group table is selected.
By changing the selection, you change the current object set. The Instance Count and Size columns
of the group table tell you how large the current object set will be when you select a row.

o Classes i Allocations .. Biggest Objects x References @'ﬁma @ Inspections -C Grag ¥
Object groups:
Priority - Duplicate String Instance Count String Length

sun. ,com. sun, xml.internal, ,com. sun.imageio. ,com. sun.istack.internal, ,com. sun.jmx. ,com.sun.medi... 49y
C:\Program Files\Javaljdk1.8.0_101Yrelib] 42
C:\Program Files\Javaljdk1.5.0_101Yjrellibirt.jar 5
C:\Users\ingo\AppData\Roaming'Dashlane\4.6.8. 25848 bin \Firefox_Extension'{442718d3-475e-4... 2

C:\Program Files\Javatjdk1.8.0_101Yre\ib\ext\access-bridge-64.jar 3

C:\Program Files\lavaljdk 1.8.0_101\jre\lib\ext\sunjce_provider. jar 3 66
C:\Program Files\Javatjdk1.8.0_101reViblext 4

Ci\Program Files\Javaijdk1.5,0_101Yjreib\ext\ocaledata . jar 3

C:\Program Files\Javaljdk 1.8.0_101\jre\lib\ext\sunpkes11. jar 3

Current object set: 2 instances of java.lang.String
3 selection steps, 48 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references ~ Use ... w Apply filter ... - =3 Show In Graph ﬁ - @

- Object Retained Size Shallow Size Allocation Time (h:m:s)

Ci java.lang.5tring (0x1bd3) [“sun. com.sun,xmlinternal.,com.sun... 2,744 bytes 24bytes nfa
G java.lang.5tring (0% 1bd2) ["sun. .com.sun,xml.internal.,com.sun... 2,744 bytes 24 bytes nfa

80

The group selection is not a separate selection step in the heap walker, but it becomes part of
the selection step made by the inspection. You can see the group selection in the selection step
pane at the bottom. When you change the group selection, the selection step pane is updated
immediately.

Each inspection that creates groups decides which groups are most important in the context of
the inspection. Because this does not always correspond to the natural sort order of one of the
other columns, the Priority column in the group table contains a numeric value that enforces the
sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In this way,
you can go back in the history and look at the results of previously calculated inspections without
waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph. While
the graph has a low visual density and is impractical for some types of analyses, it still is the best
way to visualize relationships between objects. For example, circular references are difficult to
interpretin a tree, but immediately evident in a graph. Also, it may be beneficial to see incoming
and outgoing references together, which is impossible in a tree structure where you can see
either one or the other.

The heap walker graph does not automatically show any objects from the current object set, nor
is it cleared when you change the current object set. You manually add selected objects to the
graph from the outgoing references view, the incoming references view or the biggest objects
view by selecting one or more instances and using the Show In Graph action.

O Classes Wl Mlocations ™ Biggest Objects 3 References) Time 43 Inspections = Grap»

Current object set: 683 instances of java.awt.geom.GeneralPath
2 selection steps, 21 kB shallow size, Calculate retasined and deep sizes Use retained objects

Incoming references ~ Use .. w 4: Show In Graph | @ = I j‘, Show Paths To GC Root

- Object Retained Size Shallow Size Allocation Time (him:s)

M }izva.awt.geom. GeneralPath (0 IWEE ~
- | j java.awt.geom,GeneralPath (D 248 bytes 32 bytes nfa

=
&

+---[-j java.awt.geom, GeneralPath 243 bytes 32bytes
=i java.awt.geom.GeneralPath 248 bytes 32 bytes
= java.awt.geom.GeneralPath 243 bytes 32bytes
=-- () java.awt.geom.GeneralPath 243 bytes 32 bytes
= [java.awt.geom.GeneralPath (0 245 bytes 32 bytes
- (W java.awt.geom, GeneralPath (0 248 bytes 32bvtes

Package names in the graph are shortened by default. Like in the CPU call graph, you can enable
the full display in the view settings. References are painted as arrows. If you move the mouse
over the reference, a tooltip window will be displayed that shows details for the particular
reference. Instances that were manually added from the reference views have a blue background.
The more recently an instance has been added, the darker the background color. Garbage
collector roots have a red background and classes have a yellow background.

81

4 Classes Il Alocations ™ Biggest Objects L References © Time {3F Inspections = Graph

Heap Walker Object Graph

The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships and
connections.

Use ... =

~
<
"
7
- JutilidentiyHashiMap
’o Jjava stackin
yel s.awt AWTAutoShutdown A j.util Hashset L
/O = \ /’+ :
= =
tlass s.awt ANTAUtoShutdown ?’f—”‘_} s awt AWTAutoShutdown > jlang Object
2
El
,O unspecified root 5 Jlang.Object
| Jrd
& llangThread :j
v
< >

By default, the reference graph only shows the direct incoming and outgoing references of the
current instance. You can expand the graph by double clicking on any object. This will expand
either the direct incoming or the direct outgoing references for that object, depending on the
direction you're moving in. With the expansion controls on the left and right sides of an instance
you can selectively open incoming and outgoing references. If you need to backtrack, use the
undo functionality to restore previous states of the graph, so you don't get distracted by too
many nodes. To trim the graph, there are actions for removing all unconnected nodes or even
for removing all objects.

Like in the incoming references view, the graph has a Show Path To GC Root button that will
expand one or more reference chains to a garbage collector root [p. 186] if available. In addition,
there is a Find Path Between Two Selected Nodes action that is active if two instances are selected.
It can search for directed and undirected paths and optionally also along weak references. If a
suitable path is found, it is shown in red.

€ Path Search Options b

Search Directions

EBearch for directed path from first to second object

Search for directed path from second to first object
[[] Search for undirected path g}

Options

This search follows soft references, as per the initial retention setting
for the heap dump.

[[] Also follow weak, phantom and finalizer references for this search)

Stop search at dasses (7]

Initial object set

When you take a heap snapshot, you can specify options that control the initial object set. If you
have recorded allocations, the Select recorded objects check box restricts the initially displayed

82

objects to those that have been recorded. The numbers will usually differ from those in the live
memory views, because unreferenced objects are removed by the heap walker. Unrecorded
objects are still present in the heap snapshot, they are just not displayed in the initial object set.
With further selection steps you can reach unrecorded objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced objects
are distracting when looking for memory leaks where only strongly referenced objects are
relevant. However, in those cases where you are interested in weakly referenced objects you
can tell the heap walker to retain them. The four weak reference types in the JVM are "soft",
"weak", "phantom" and "finalizer" and you can chose which of them should be sufficient for
retaining an object in the heap snapshot.

@ Heap Snapshot Options x

Heap Dump Options Qverhead Options

[] Select recorded objects

Initially, the heap walker will show onhy those cbjects that have been rcorded in
the dynamic memeory view section.

Perform full GC in heap snapshat

Retain objects held by soft references =

[Asoft
[weak
[phantom
. Unreferencet [finalizer p walker. The dynamic
memory view Je counts.
OK Cancel

Concel

If present, weakly referenced objects can be selected or removed from the current object set by
using the "Weak reference" inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case. While
you could do this by starting and stopping allocation recording around that use case, there is a
much better way that has a lot less overhead and preserves the allocation recording feature for
other purposes: The Mark Heap action that is advertised on the heap walker overview and that
is also available in the Profiling menu or as a trigger action marks all objects on the heap as "old".
When you take the next heap snapshot, it is now clear what the "new" objects should be.

83

Telemetries

Live memaory

Heap Walker

CPU views

Threads

Monitors & locks

Databases

JEE &Probes

Qo umpg @

&
4

MBeans

§

If there was a previous heap snapshot or a mark heap invocation, the title area of the heap
walker shows the new instance count and two links titled Use new and Use old that allow you to
select either the instances that have been allocated since that point in time, or the surviving
instances that were allocated before. This information is available for each object set, so you can

0 No snapshot has been taken.

For a maximum of features:

Press ﬁ to take a JProfiler heap snapshot

The snapshot is displayed in this frame and saved together with profiing information from other
views

» For live profiling sessions, special features are available

» Integrations with other views require this snapshot type

Press to indicate the starting point of a use case

« All objects that are currently on the heap will be marked as old
= When you take the next heap snapshot, new and old objects will be listed separately in the header
« ‘You can select new or old objects only, making it easy to track down memory leaks

For a minimum of overhead:

.
Press | g | to take an HPROF heap snapshot

» The snapshot is saved separately and displayed in another frame
« Mot all features are available

» Memory and CPU overhead in the profiled VM are lower than for the JProfiler snapshot

drill down first and select new or old instances later on.

O Classes Wl Allocations

.. Biggest Objects i References O Time @ Inspections

Current object set: 68,331 objects in 1,012 dlasses
1 selection step, 4,563 kB shallow size
24,942 new instances (36.5%) since the last heap dump Use old

) Classes ~ Usge .. w (& Group By Class Loaders Calculats estimated retained sizes
Mame Instance Count « Size

char(] L —— 608 KE A
java lang.String I G653 208 kB
java.utl. HashMap Shlode [K 242kB
ava lang.Long I 5,50 141kB
bvtel'1 I .72 264 kB

84

Thread Profiling

Using threads incorrectly can create many different kinds of problems. Too many active threads
can result in thread starvation, threads can block each other and impact the liveness of your
application or acquiring locks in the wrong order can lead to deadlocks. In addition, information
about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections, the "Threads" section deals with the
life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section offers
functionality for analyzing the interaction of multiple threads.

-
v Telemetries

Live memary
Heap Walker

CPU views

Threads

Monitors & locks

Databases

JEE &Probes

© W= i|m g &

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time and can be filtered
by name. When monitor events have been recorded, you can hover over parts of a thread where
it was in the "Waiting" or "Blocked" state and see the associated stack trace with a link into the
monitor history view.

Show usages: |Both alive and dead Filter w
’ Telemetries
L B [e B e
Threads B! 0:20 0:30
main [main] 1
-i:l Live memory -
] HSQLDB Server @443b7951 [mair] L] |
HSQLDE Timer @70850ec4 [main] |
’
'ﬁ Heap Walker AWT-EventQueue-0 [mzin] |
pool-1-thread-2 [main] ni | 1
pool-1-thread-1 [main]
CPU views ~ = N |
pool-1-thread-5 [main] | | 1
pool-1-thread-3 [main] [| | 1
Threads pool-1-thread-4 [main] | 1
e |
Tomcat JDBC Pool Cleaner[414493378... |
Thread History HSQLDE Connection @60f78175 [H5Q 1. | 1
HSQLDB Ci cti 5b041656 [HS. I ma [} [|
Thread Monitor Q e S |
HSQLDE Connection @71fa3214 [H5Q. . | min II 1
Thread Dumps HSQLDB Connection @64dd48b2 [H5... 1 mmn | 1
n HSQLDB Connection @387d8175 [HS... 1 1 =
Monitors & locks
; Databases
mm Runnable © Waiting e Blocked m— Net1/O yol ko

-

A tabular view of all threads is available in the thread monitor view. If CPU recording is active
while a thread is being created, JProfiler saves the name of the creating thread and displays it
in the table. At the bottom, the stack trace of the creating thread is shown. For performance

85

reasons, no actual stack trace is requested from the JVM, but the current information from CPU
recording is used. This means that the stack traces will only show those classes that satisfy the
filter settings for call tree collection.

. . Name Group StartTime « Creating Thread Status
Telemetries
HSQLDB Server @443b7951 main 0:00,286 main [main] I Net[jO
HSQLDE Timer @70850ec4 main 0:00.653 HSQLDB Server @443b79... == Waiting
AWT-EventQueue-0 main 0:01.011 main [main] =1 Waiting
i, vemeners pook-1thvead-1 —— Jran | 0:0LLslAWIEventOueus-) [main] e Net1jo |
pool-1-thread-2 main 0:01. 119 AWT-EventQueue-0 [main] == NetIfO
b Heap Walker pool-1-thread-3 main 0:01. 119 AWT-EventQueue-0 I MNet[jO
pool-1-thread-4 main 0:01, 119 AWT-EventQueus-0 I Net[jO
pool-1-thread-5 main 0:01. 119 AWT-EventQueue-0 = Net IO
[Tomcat JDBC Pool Cleaner... main 0:01. 126 pool-1-thread-1 [ma: 1 Waiting
I EIuETE HSGLDE Connection @60f... HSQLDB Connections @44... 0:01.155 HSQLDB Server @443b79... £=1 Waiting
HSQLDB Connection @5b0... HSQLDE Connections @44... 0:01.267 HSQLDB Server @443b79... =1 Waiting
— HSQLDB Connection @71f... HSQLDBE Connections @44... 0:01.369 HSQLDEB Server @443b79... =3 Waiting
Threads HSQLDB Connection @64d... HSQLDE Connections @44, 0:01,471 HSQLDB Server @443b79... =3 Waiting
HSQLDB Connection @387... HSQLOE Connections @44. .. 0:01.572 HSQLDB Server @443b79... == Waiting
Thread History

Thread Monitor
Filtered stack trace for thread creation: §)

Thread Dumps java.util. concurrent.ExecutorService. submit{java. utl. concurrent. Callable)
jdbe. JdbcDema. startActivity (boolean)
N Monitors & locks jdbc. ServerControllerFrame. update Activity()
1

jdbc. ServerControllerFrames2 windowOpened(java.awt.event. WindowEvent)
java.awt.EventDispatchThread.run)

; Databases

=

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time column
is added to the table. CPU time is only measured when you record CPU data.

@ Profiling Settings X

Method Call Recording UProfiing! probes & JEE Memory Profiing Thread Profiing Miscellaneous
Auto-Tuning For Instrumentation

Enable auto-tuning)

A method is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

1. The total time of the method is more than 10 5| per mille of the entire total time

2. The average time of the method is less than 100 ps

Auto-tuning is only performed if the method call recording type is set to “Instrumentation” on the "Method
call recording™ tab.

Time Settings

CPU time measurement: (@) Elapsed time (7]
() Estimated CPU time |)

Exceptional Method Run Recording
Maximum number of separately recorded method runs: 5% 0

Time type for determining exceptional method runs: Em All states

Call Tree Splitting

Maximum number of splits: 1285 0

General Settings Cancel

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread dumps
are the full stack traces provided by the JVM and do not depend on CPU recording. Different
thread dumps can be compared in a diff viewer when you select two thread dumps and click the
Show Difference button. It is also possible to compare two threads from a single thread dump by
selecting them and choosing Show Difference from the context menu.

86

’ Telemetries Thread dumps: | [36| 2 @ H=1H5QLDB Connection @387d3175 ~
HE=HSQLDE Connection @5b041656
HE=1HSQLDE Connection @60f78175
’,' Live memory 3t 0:10.442.164 == HSQLDE Connection @64dd48b2
s 3t 0:08.876.496 Le=H5QLDE Connection @71fa3214
main
b Heap Walker = AWT-EventQueue-0
H—IHSQLDB Server @443b7951
I HSOLDB Timer @70850ec4
I CPU views H== Tomcat JDBC Pool Cleaner [414453378: 1517235450954]
= pool-1-thread-1
— Bt &
2= Threads v Copy Selected Threads To Clipboard Cirl+C et A
iava.y @ Show Difference Ctrl+Al+D L[], int, it
Thread History ava.net.SocketinputStream.read{byte[1, int, int, int) {ine: 170)
ava.net.SocketinputStream.read{byte[], int, int) (ine: 141)
Thread Moritor java.io.Bufferedinputstream. fil{) {ine: 246)
T— java.io.Bufferedinputstream. read() (line: 265)
java.io.Datalnputstream.readByte() (line: 265)
n org.hsgldb.result. Result.newResult(java.io.DataInput, org.hsgldb.rowio.Row
Monitors & lacks org.hsgldb. ClientConnection.read()
org.hsgldb. ClientConnection. execute(org.hsqldb.result.Result)
org.hsgldb.jdbc, JDBCStatement. fetchResult(ava.lang String, int, int, int[], §
; Databases Al Sl INOCCnbnmant marnm b imesfinm faen Chrined he
< >

=

Thread dumps can also be taken with the "Trigger thread dump" trigger action or via the API.

Analyzing locking situations

Every Java object has an associated monitor that can by used for two synchronization operations:
A thread can wait on a monitor until another thread issues a notification on it, or it can acquire
a lock on a monitor, possibly blocking until another thread has given up the ownership of the
lock. In addition, Java offers classes in the java.util.concurrent.| ocks package for
implementing more advanced locking strategies. Locks in that package do not use monitors of
objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking situation,
there are one or multiple threads, a monitor or aninstance ofj ava. uti | . concurrent. | ocks.
Lock as well as a waiting or blocking operation that takes a certain amount of time. These locking
situations are presented in a tabular fashion in the monitor history view, and visually in the
locking history graph.

=
I CPU views curentevent: || | € || ¥ || 2| 2/2¢ [ato:03.870.084]

Eventofinterest: || & | » 2| n

ked Recording thresholds: 1,000 ps bloc

—
Threads ~
—
{? Manitors & locks N
Thread-2 [main] ~ --—------ | Class: hezier.BezierAnim§Demo
Monitor |d: 4
Current Locking Graph
Current Monitors
Locking History Graph | AWT-EventQueue-0 [main] :
Waiting for monitor sing 3.860.201in: | %
Monitor History
java.lang. Object. wait(long) w
Monitor Usage Statistics r bezier.Bezier AnimsDemo. block(boolean) >
ryrrrrrrrr e T e e e T T T hezier. Bezier Anim$Demo . step(int, int)
010 0:20 beier Bezier AnimsD int(java.ant, Grap
; Databases Ezier.bezier AmmsLemo.paintijava.awt. Grap
ava.awt.EventDispatchThread. run()
o JEE & Probes
P < >
mes MBeans . . N N
" = Event = Eventinvolving nodes of interest e Show in monitor history B (L |

The locking history graph focuses on the entire set of relationships of all involved monitors and
threads rather than the duration of isolated monitor events. Threads and monitors participating
in a locking situation are painted as blue and gray rectangles, if they are part of a deadlock, they

87

are painted in red. Black arrows indicate ownership of a monitor, yellow arrows extend from
waiting threads to the associated monitors, while a dashed red arrow indicates that a thread
wants to acquire a monitor and is currently blocking. Stack traces are available when hovering
over blocking or waiting arrows if CPU data has been recorded. Those tool tips contain hyperlinks
that take you to the corresponding row in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is displayed
as a column so you can find the most important events by sorting the table. For any selected
row in the tabular view, you can jump to the graph with the Show in Graph action.

L o - ¥ —
- 1 N + 9 N
8 8 % S 4% © -
Start Stap Stant Add Wiaw Stop Freeze Show In |Show In
cordings Recordings Tracking | P %S Bockmak | EP™ comings PP b Wiew | Hesp Walker] Grach
Profiling '
Show monitors: |Waiting and blocking ~ | Threshold in ms: = Filter ~
Time & Duration Type Monitor ID Monitor Class Waiting Thread Owning Thread
203, 2. 199 ms == Waiting 3 java.lang.Object AWT-EventQueus-0 |]
Blocked beziar.ﬂeziemnimmemo read-2 [main] AWT-EventQueus-0 [main]
199 ms == Waiting 3 java.lang. Object AWT-EventQueue-0 [main]
189 ms mm Blocked 4 bezier BezierAnim$Demo Thread-2 [main] AWT-EventQueue-0 [main]
199 me =3 Waiting 3 java.lang. Object AWT-EventQueue-0 [mzin]
190 ms s Blocked 4 bezier.BezierAnimsDemo Thread-2 [main] AWT-EventQueue-0 [main]
199 ms 3 Waiting 3 java.lang.Object AWT-EventQueue-0 [main]
190 ms s Elocked 4 bezier.BezierAnimsDemo Thread-2 [main] AWT-EventQueus-0 [mzin]

Totak

1,559 ms

Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change]
Filtered stack trace for waiting thread: §) Filtered stack trace for owning thread:

bezier. Bezier Anim §Demo.run()

java.lang. Object. wait{long)
bezier. Bezier AnimsDemo.block(boalean)
bezier.BezierAnim$Demo.step(int, int)
bezier.BezierAnimsDemo.paint(java. awt. Graphics)
java.awt.EventDispatchThread.run{)

Each monitor event has an associated monitor. The Monitor Class column shows the class name
of the instance whose monitor is used, or "[raw monitor]" if no Java object is associated with the
monitor. In any case, monitors have a unique ID that is displayed in a separate column, so you
can correlate the usage of the same monitor over multiple events. Each monitor event has a
waiting thread that is performing the operation and optionally an owning thread that is blocking
the operation. If available, their stack traces are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action in both
monitor history view and locking history graph provides a link into the heap walker and selects
the monitor instance as a new object set.

-

L3 . ¥ — M
& = | £ + 7 «4
r_{" g& 7 C @
Start Sty Start Add Wiew Stop Freeze Showe In~ |Show In
cordings Recordings Tracking | ™5 Bockmak | EP™ comings PEP | nirie iew | |Heap Walker| Srach
Profiling
Show monitors: |Waiting and blocking ~ | Threshold in ms: 04+ Filter ~
Time = Duration Type Monitor ID Monitor Class Waiting Thread Owning Thread
0:03.880 [Jan 22, 2... 199 ms =3 Waiting 3 java.lang.Object AWT-EventQueue-0 [main]
0:03.870 [Jan 29, 2... Blocked beziEr.HezierAnim.‘DEmo read-2 [main] AWT-EventQueue-0 [main]
. 199 ms == Waiting 3 java.lang.Object AWT-EventQueue-0 [main]
189 ms s Blocked 4 bezier BezierAnimsDemo Thread-2 [main] AWT-EventQueue-0 [main]

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for waiting
and blocking events below which events are immediately discarded. These thresholds are defined
in the view settings and can be increased in order to focus on longer events.

88

curentevent: ||| | |3 | 3| 2/36 [to:03.870.084]
Eventofinterest: | | € } }.' 1/18 Recording thresholds: 1,000 ps blocking / 100,000 ps waiting
-~
Thread-2 [main]
X
| AWT-EventQueue-0 [main] | Recording Thresholds
Monitor blocking threshald: 1,000 ps
Monitor waiting threshald: 100,000 -5 ps
v
T e I i
0:10 0:20 All events with a duration that is lower than the configured threshold will be discarded.
Warning: If you lower the thresholds, more data will be recorded. Please note that the
assodated memory overhead grows linearly in tme.
Cone
= Event =W Event involving nodes of interest mmm Cy I

To the recorded events, you can further apply filters. The monitor history view offers a threshold,
an event type and a text filter at the top of the view. The locking history graph allows you to
select a thread or a monitor of interest and only show locking situations that involve the marked
entities. Events of interest are shown with a different color in the time line and there is a secondary
navigation bar to step through those events. If the current event is not an event of interest, you
can see how many events are between the current event and the next event of interest in either
direction.

In addition to locking situations where the selected thread or monitor are present, the locking
situations where it is removed from the graph are shown as well. This is because each monitor
event is defined by two such locking situations, one where an operation is started and one where
it has ended. This also means that a completely empty graph is a valid locking situation that
indicates that there are no more locks in the JVM.

curentevent: | || €| | > | #l| 2/28 [to:z.s70.084
-

Eventofinterest: | |4 | # '}.' 1/ 14| Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change]

-

Thread-2 [main] |-------—- >

- bezier BezierAnim$Dem

i I‘ Mark Modes of Interest I

Rermove Mark

| AWT-Event@ueue-0 [main] Class:java EI: Show Selection In Heap Walker
Manits
T Expoit View Ctrl+R
View Settings Ctrl+T v
T
‘ 010 0:20 0:30 0:40 0:50 1:00 Lo
= Event ®mm Eventinvolving nodes of interest = Currently displayed event Click and drag to cumulate events }3 2k x

Another strategy to reduce the number of events that need your attention is to cumulate locking
situations. In the locking history graph, there is a time line at the bottom that shows all recorded
events. Clicking and dragging in it selects a time range and data from all contained events is
shown in the locking graph above. In a cumulated graph, each arrow can contain multiple events
of the same type. In that case, the tool tip window shows the number of events as well as the
total time of all contained events. A drop-down list in the tool tip window shows the time stamps
and lets you switch between the different events.

89

Deadlock detection

Data in the current locking graph and current monitors views is always shown, regardless of
whether monitor events are recorded. These views show the current locking situations and the
monitor events that are in progress. Blocking operations are usually short-lived, but in the event
of a deadlock, both views will display a permanent view of the issue. In addition, the current
locking graph shows the threads and monitors that produce a deadlock in red, so you can spot
such a problem immediately.

-

~
I CPU views
- Thread-1 [main|
— \
\
v
\
'r? Moritors & lacks Thread-3 [main] \\
\\ Y
\\)
Current Locking Graph
L |-, Class: java lang.Ohject
Current Monitors TS [l Manitor Id: 2
Lacking History Graph
Monitor History Thread-2 fmain]
Monitor Usage Statistics
- Class: java.lang.Object
Thread-0 [main] | Monitor Id: 1
; Databases
Blocked on monitor since 0:08.077.043 in: |7
java.lang.Object.wait{long)
° JEE &Probes misc.DeadlockTests1.run{)
P
im MBeans v
= —

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the monitor
statistics view calculates reports from the monitor recording data. You can group monitor events

by monitors, thread names, or classes of monitors and analyze cumulated counts and durations
for each row.

2@ HZ £ 8% Ch%h L2 0O F B

Start Save Session Start Stap Start Add Wiew Calculate Step Show In
Center 2% Snapchot Setings | Recordings Recordings Tracking | "M C Bookmark | EPO sangs | HHP | Stateries | Monitors History
Session Profiling v spedh
-
Monitor Usage Statistics Grouped by Monitors
” Telemetries
Monitors Block Count Block Duration = Wait Count Wait Duration
bezier.BezierAnimsDema {id: 4) 12 2,281ms 1] Ous
-‘:' Live memary java.util.concurrent.locks Reentra... 4 720 ps 0 Ops
. java.util.concurrent.locks. Reentra... 4 138 ps 1] Ous
java.lang. Object (id: 1) 1] Ops 1,209 631ms
b Heap Walker java.lang.Object (id: 3) 1] 0ps 12 2,399 ms
java.util.concurrent.locks, Abstrac. ., a Ops 1,197 9,098 ms
I CPU views
—
Threads
.
N & Monitor Usage Statistics Options X
1 Moritors & locks
Select the desired monitor usage statistics:
Current Locking Graph @® Group by monitors
Current Manitors (O Group by threads
Locking History Graph (2 Group by dasses of monitors
Monitor History Cancel
Monitor Usage Statistics
-
B @ 2active recordings VM #1 00:19 & Profiing

90

Probes

CPU and memory profiling are primarily concerned with objects and method calls, the basic
building blocks of an application on the JVM. For some technologies, a more high-level approach
is required that extracts semantic data from the running application and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call tree
shows when you use the JDBC API and how long those calls take. However, different SQL
statements may be executed for each call and you have no idea which of those calls are
responsible for a performance bottleneck. Also, JDBC calls often originate from many different
places in your application and it is important to have a single view that shows all database calls
instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the JRE.
Probes add instrumentation into specific classes to collect their data and display them in dedicated
views in the "Databases" and "JEE & Probes" view sections. In addition, probes can annotate data
into the call tree so you can see both generic CPU profiling as well as high-level data at the same
time.

-

’ Telemetries
Live memar

i e

.

ﬁ Heap Walker

CPU views
Threads
Monitors & locks

y/
n
1
; Databases
©

JEE &.Probes

Smmy MBeans
~rr

If you are interested in getting more information about a technology that is not directly supported
by JProfiler, you can write your own probe [p. 138] for it. Some libraries, containers or database
drivers may ship with their own embedded probe [p. 143] that becomes visible in JProfiler when
they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start recording
[p. 23] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views. At the
lowest level are probe events. Other views show data that cumulates probe events. By default,
probe events are not retained even when a probe is being recorded. When single events become
important, you can record them in the probe events view. For some probes, like the file probe,
this is generally not advisable because they usually generate events at a high rate. Other probes,
like the servlet probe or the JDBC probe may generate events at a much lower rate and so
recording single events may be appropriate.

91

£ 8TV G 4|2t E O Q|56 |

Stan Stop Change Add Wiz Stop Probe Stop Freeze Contral
cordings Recordings Tracking | ©09C Bockmark | B Sy Hele 0BC Events | Wiew Object
Prafiing Viewr specfic
4 1, Hot Spots ',‘ Connection Leaks ! Telemetries Events [) JDBC
JDBC connections and exscution of statements

Show events: All types v Filter ~

Start Time =« Event Type Duration Connection ID Description Thread
0:03,172 [Jan 23, ... 3 Connection op... Ops i jdbcidemo: fjremote_host/test Servlet request simulat... ~
0:03.195 [Jan 29, ...| Prepared state... SELECT * FROM ORDER. O WHERE O.DATE ... [Servlet request simulat. ..
0:03.585 [. 3 Connection op... Ops3 jdbcidemo: ffremote_host/test RMI TCP Connection{2...
0:03.585 | . B Statementexe... 831ms 3 SELECT i.id, i.availability, i.name FROM inven... RMI TCP Connection(2...
0:03.705 [. 3 Connection op... Ops2 jdbc:demo: ffremote_host/test Servlet request simulat...
0:03.716 [W Prepared state... 165ms 2 SELECT * FROM ORDER O WHERE Q.DATE =... Servlet reguest simulat...
0:04.064 | . EEE Prepared state... 43,767 ps 1 INSERT INTO CUSTOMER (ID, NAME, OPTIO... Servletrequest simulat...
0:04.145 | . 3 Connection op... Ops 4 jdbc:demo: ffremote_host/test JDBC Job Simulator [;
0:04.145 [. B Statement exe... 656 ms 4 SELECT SUM(o.price * o.quantity) FROM cust... JDBC Job Simulator [r
0:04. 159 Prepared state... 70,641ps 1 INSERT INTO ORDER (ID, MAME, OPTIONS) ... Servletrequest simulat...
0:04.318 Prepared state... 47,844 ps 1 INSERT INTO ORDER_CUSTOMER. (ORDER _I... Servletrequest simulat... o

Total: 44,826 ms

Stack trace:

javax.persistence, TypedQuery.getResultiist() ~

com. ejt.demo.server.handlers. RequestHandler.execute JpaQuery(javax. persistence. EntityManager)

com,ejt.demo.server.handlers, RequestHandler. make JpaCall()

com, &jt.dema.zerver.handlers, RequestHandler.perform\Work()

com. &jt.dema.zerver.handlers. RequestHandler.run()

HTTF: [demo/view? (line: 1) v

Probe events capture a probe string from a variety of sources, including method parameters,
return values, the instrumented object and thrown exceptions. Probes may collect data from
multiple method calls, for example like the JDBC probe that has to intercept all setter calls for
prepared statements in order to construct the actual SQL string. The probe string is the basic
information about the higher-level subsystem that is measured by the probe. In addition, an
event contains a start time, an optional duration, the associated thread and a stack trace.

At the bottom the of the table, there is a special total row that sums all numeric columns in the
table. For the default columns, this only includes the Duration column, Together with the filter
selector above the table, you can analyze the collected data for selected subsets of events. By
default, the text filter works on all available columns. In order to be more specific, you can select
a particular column from the filter options popup menu.

Probes can record different kinds of activities and associate an event type with their probe events.
For example, the JDBC probe shows statements, prepared statements and batch executions as
event types with different colors.

4 I\, Hot Spots ',“ Connection Leaks ! Telemetries Events [3 .) JDBC
JDBC connections and exscution of statements

Show events: |All types ~ Filter ~

Start Time & Duration Connection ID Description Thread
0:03.172 |connection dosed Ops1 jdbc:demo: ffremote_host/test Serviet request simulat...

I |SELECT *FROM ORDER O WHERE O.DATE >...

Ops3 jdbc:demo: ffremote_host/test RMI TCF Connection(2...

wecution 881ms 3 SELECT i.id, i.availability, i.name FROM inven... RMITCP Connection(2...

.. L Connection op... Ops2 jdbcidemo: firemote_host/test Servlet request simulat. ..

. EEm Frepared state... 165ms 2 SELECT *FROM ORDER O WHERE O.DATE »... Servlet request simulat. ..

W Prepared state... 43,767 ps 1 INSERT INTO CUSTOMER {ID, NAME, OPTIO... Servlet request simulat...

. 3 Connection op... Ops4 jdbc:dema: ffremote_host/test JDBEC Job Simulator [m...

. B Statement exe... 656 ms 4 SELECT 5UM{p.price * o.quantity) FROM cust... IDBC Job Simulator [m...

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only the
most recent events are retained, older events are discarded. This consolidation does not affect
the higher-level views.

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated into
a probe call tree where the probe strings are the leaf nodes, called "payloads". Only call stacks

92

where a probe event has been created are included in that tree. The information on the method
nodes refers to the recorded payload names. For example, if an SQL statement was executed
42 times at a particular call stack with a total time of 9000 ms, this adds an event count of 42
and a time of 9000 ms to all ancestor call tree nodes. The cumulation of all recorded payloads
forms the call tree that shows you which call paths consume most of the probe-specific time.
The focus of the probe tree is the payloads, so the view filter searches for payloads by default,
although its context menu also offers a mode to filter classes.

-)) IDBC

4 o Call Tree 1, Hot Spots i Connection Leaks B Telemetries ¥ IDEC conmections and emcution of <tatuments
Thread selection: | §§ All thread groups ~ | Aggregation level: | () Methods w
Thread status: |Em All states | View mode: = Tree w
B m— 85.8% - 40,119 ms - 56 evt, java,util. concurrent. ThreadPoolExecutor $Worker.run ~

H=t “| ™ 19,5% - 9,136 ms - 12 evt. called from call site #1 (remote VM #1
=47 M 15.5% - 9,136 ms - 12 evt. com.ejt.demo. server.handlers. RmiHandlerImpl.remot=Operation

=647 ™ 19,5% - 9,138 ms - 12 evt. com.ejt.demo.server.handlers. RmiHandlerImpl. performWark

=-“47m 15.5% - 9,136 ms - 12 evt. com.ejt.demo.server.handlers.RmiHandlerImpl.executeldbcstatements
= @- 19.5% - 9,136 ms - 12 evt. java.sql.Statement, executeQuery
M 19,5% - 3,136 ms - 12 evt, SELECT i.id, i.availability, i,name FROM inventory i WHERE i.delayed = 1

- | W 14.7% - 6,874 ms - 10 evt. called from call site #2 (remote VM #1
-] W 14.7% - 6,863 ms - 9 evt. called from cal site #5 (remote VM £1)
-] ™ 13.8% - 6,433 ms - 9 evt, called from call site #7 (remote VM #1
i [W 12.6% - 5,889 ms - 9 evt, called from call site #11 (remote VM #1)
“ M 10.5% - 4,922 ms - 7 evt. called from call site #16 (remote VM #1)
Q-@I 14.2% - 6,661 ms - 72 evt. com.ejt.demo.server.DemoServers3.run

= OI 2.8% - 1,313 ms - 18 evt. HTTP: [demojfview2

= -@I 2,8% - 1,313 ms - 18 evt, com, ejt.demo.server.handlers, RequestHandler.run
E}--@I 2.8% - 1,313 ms - 18 evt, com.ejt.demo, server, handlers,RequestHandler. performork
= @I 2.8% - 1,313 ms - 18 evt. com.ejt.demo,server.handlers.RequestHandler. make JpaCall
E}--@ 1.7% - 805 ms - 14 evt. javax.persistence .EntityManager . flush
0.6% - 284 ms - 4 evt. INSERT INTO ORDER. (ID, NAME, OPTIONS) VALUES (7, 7, 7)
0.5% - 243 me - 4 evt. INSERT INTO CUSTOMER (ID, NAME, OPTIONS) VALUES (7, 2,)
0.5% - 229 me - 4 evt, INSERT INTO ORDER_CUSTOMER (ORDER _ID, CUSTOMER _ID) VALUES (2, 7) v
2

010 ac @aa 1 At DELETE EMNAKANCEN O ICTORMEN WUENE ANCED 10

Payload View Filters -

If CPU recording is switched off, the back traces will only contain a "No CPU data was recorded"
node. If CPU data was only partially recorded, there may be a mixture of these nodes with actual
back traces. Even if sampling is enabled, JProfiler records the exact call traces for probe payloads
by default. If you want to avoid this overhead, you can switch it off in the profiling settings. There
are several other tuning options for probe recording that can be adjusted to increase data
collection or reduce overhead.

93

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads and
not method calls like in the CPU view section [p. 46] . This is often the most immediately useful
view of a probe. If CPU recording is active, you can open the top-level hot spots and analyze the
method backtraces, just like in the regular CPU hot spots view. The numbers on the back trace
nodes indicate how many probe events with what total duration were measured along the call

Method Call Recording CPU Profiling UbE_S__?_JEEE Memory Profiing Thread Profiing Miscellaneous

Payload Options

Payloads are conzolidated if there are too many different strings. When annotating payloads into the call tree, payloads
are consolidated into an [Earlier calls] node.

Maximum number of distinct payloads for probe hot spots: 16,384 0
Maximum number of annotated payloads per call stack: 5005 @
Cutoff payload strings after: 8,192+ characters ﬂ

I Record payload call stacks in sampling mods Io

[] Retain call stacks when consolidating hot spots)

Event Options

Maximum number of recorded events: Maximum number of recorded events: 8,19215| @

Java EE Options
Detect Java EE components ()

[[] show request URLs without a recorded call stack ()

Mote: Probes are individually configured on the "JEE & Probes”™ tab of the session settings dialog. Settings on this tab of
the profiling settings dislog apply to all probes.,

General Settings Cancel

@ Profiling Settings X

stack extending from the deepest node to the node just below the hot spot.

4 & Call Tree 1. Hot Spots ',‘ Connection Leaks ! Telemetries 3 JDBC sannactons and wdmdmh:riﬁ
Thread selection: . All thread groups ~ | Aggregation level: 0 Methods ~
Thread status: |0 All states ~
Hot Spot Time - Average Time Events
1, SELECT i.id, i.availability, i.name FROM inventory i WHERE i.delayed = 1 I G206 ms (B4 %) 720 ms &0
[/8, SELECT *® FROM ORDER O WHERE O.DATE »=? 0 2,579 ms (5 %) 151ms 17
E‘-@I 5.1% - 2,579 ms - 17 hot spot evt. javax.persistence. TypedQuery.getResultlist
= -@I 5.1% - 2,579 ms - 17 hot spot evt. com.ejt.demo.server.handlers. RequestHandler.executeIJpaQuery
E}--@l 5.1% - 2,579 ms - 17 hot spot evt, com.ejt.demo, server. handlers.RequestHandler . makeJpaCall
=] @I 5.1% - 2,579 ms - 17 hot spot evt, com.ejt.demo.server.handlers.RequestHandler. performWork
Er--@l 5.1% - 2,579 ms - 17 hot spot evt. com.ejt.demo.server. handlers. RequestHandler.run
- 1.3% - 683 ms - 5 hot spot evt. HTTP: [demo/view?
B 1.0% - 486 ms - 3 hot spot evt. HTTP: [demojview3
B 1.0% - 432 ms - 3 hot spot evt, HTTP: jdemo/view4
0.9% - 479 ms - 3 hot spot evt, HTTP: fdemojview 1
- 0.8% - 427 ms - 3 hot spot evt, HTTP: fdemojviews
- /4y, SELECT SUM(o. price * o.quantity) FROM customers c LEFT JOIN order o ... | 2,017 ms (3 %) 572 ms 3
- /4., INSERT INTO ORDER. {ID, NAME, OFTIONS) VALUES (7, 7, 7) | 1,042 ms (2 %) 51,319 ps 17
- /&, INSERT INTO CUSTOMER {ID, NAME, OPTIONS) VALUES (2, 2, 7) | 1,026 me (2 %) 50,353 ps 17
1, INSERT INTO ORDER_CUSTOMER. (ORDER _ID, CUSTOMER _ID) VALUES (2... | 1,022 ms (2 %) 60,129 ps 17
-/, INSERT INTQ order_report VALUES (7, 7, 7) 67,476 ps (0 %) 22,432 ps 3
- /4, DELETE FROM ORDER._CUSTOMER WHERE ORDER_ID =7 58,759 ps (0 %) 29,379 ps 2
- /4, DELETE FROM ORDER. WHERE ID = ? 47,434 ps (0 %) 23,717 ps 2

Both probe call tree as well as probe hot spots view allow you to select a thread or thread group,
the thread status and an aggregation level for method nodes, just like in the corresponding CPU
views. When you come from the CPU views to compare data, it is important to keep in mind that
the default thread status in the probe views is "All states" and not "Runnable" like in the CPU
views. This is because a probe event often involves external systems like database calls, socket

Payload View Filters

94

operations or process executions where it is important to look at the total time and not only on
the time that the current JVM has spent working on it.

Control objects

Many libraries that provide access to external resources give you a connection object that you
can use for interacting with the resource. For example, when starting a process, thej ava. | ang.
Pr ocess object lets you read from the output streams and write to the input stream. When
working with JDBC, you need a j ava. sql . Connecti on object to perform SQL queries. The
generic term that is used in JProfiler for this kind of object is "control object".

Grouping the probe events with their control objects and showing their life cycle can help you
to better understand where a problem comes from. Also, creating control objects is often
expensive, so you want to make sure that your application does not create too many and closes
them properly. For this purpose, probes that support control objects have a "Time line" and a
"Control objects" view, where the latter may be named more specifically, for example
"Connections" for the IDBC probe. When a control object is opened or closed, the probe creates
special probe events that are shown in the events view, so you can inspect the associated stack
traces.

In the time line view, each control object is shown as a bar whose coloring shows when the
control object was active. Probes can record different event types and the time line is colored
accordingly. This status information is not taken from the list of events, which may be consolidated
or not even available, but is sampled every 100 ms from the last status. Control objects have a
name that allows you to identify them. For example, the file probe creates control objects with
the file name while the JDBC probe shows the connection string as the name of the control object.

JDBC

Gl Time Line ; Connections ok, Call Tree 1, Hot Spots T DB connamsons and esseution of Srstaments

Connections 0:10 Q:I:Q
jdbc:demo: ffremote_host/test [ID 1]
jdbc:demo: ffremote_host/test [1D 3]
jdbc:demo: ffremote_host/test [10 2]
jdbcidemo: ffremote_host/test [1
jdbc:demo: ffremote_host/test [ID &]
jdbcidemo: ffremote_host/test [T
jdbc:dema: ffremote_host/test [
jdbc:demo: ffremote_host/test [T
jdbcidemo: ffremote_host/test [1D 8]

jdbe:demo: ffremote_hostftest [0 10]
jdbcidemo: ffremote_host/test [ID 11]

.'.';.:'.'..""h'::
3 i

B8 B8 B8 8 88 8 88

= Idle m Statement execution W Prepared statement execution BN Batch execution IS} ko

The control objects view shows all control objects in tabular form. Both open and closed control
objects are present by default. You can use the controls at the top to restrict the display to open
or closed control objects only or to filter the contents of a particular column. In addition to the
basic life cycle data for control objects, the table shows data for the cumulated activity of each
control object, for example the event count and the average event duration.

Different probes show different columns here, the process probe for example shows separate
sets of columns for read and write events. This information is also available if single event
recording is disabled. Just like for the events view, the total row at the bottom can be used
together with filtering to get cumulated data on partial sets of control objects.

95

. . JDBC
@p Time Line E Cannections ok, Call Tree 1, Hot Spots = B connections and esmestion of statments

Show physical connections: |Both open and dosed -~ Filter -
ID -~ Connection String Start Time End Time Event Count Event Duration
i jdbc:demo: ffremote_host/test 18 18 1,345 ms
2 jdbc:deme: ffremote_host/test 12 1,013 ms
3 jdbc:deme: ffremote_host/test 14 10,543 ms
4 jdbc:demo: ffremote_host/test 6 2,084 ms
5 jdbc:deme: ffremote_host/test 20 1,718 ms
[jdbc:dema: ffremote_host/test 15 10,510 ms
7 jdbc:demo: ffremote_host/test 17 11,948 ms
8 jdbc:demo: ffremote_host/test 10 666 ms
] jdbc:dema: ffremote_host/test 12 8,715ms
10 jdbe:demo: ffremote_host/test 16 1,398 ms
11 jdbcidemo: ffremote_host/test [4,330 ms
Totak: 146 54,275 ms

A probe can publish certain properties in a nested table. This is done to reduce the information
overload in the main table and give more space to table columns. If a nested table is present,
such as for the file and process probes, each row has an expansion handle at the left side that
opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation actions.
For example, in the time line view, you can right-click a row and jump to each of the other views
so that only the data from the selected control object is displayed. This is achieved by filtering
the control object ID to the selected value.

@ Time Line Connections Call Tree 1., Hot Spots “ JDBC
- E & . " JDEC connections and execution of statements

Show physical connections: |Both open and dosed -~ Filter ~

.........
Connections

jdbc:demo: ffremote_host/test [ID 1] I

E Show Selected Connection

Show Events For Selected Connection

jdbc:dema: ffremote_host/ftest [ID &]
jdbc:demo: ffremote_host/test [0
jdbc:dema: ffremote_host/ftest [ID 5]

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded. For any
probe, the number of probe events per second and some average measure for probe events
like the average duration or the throughput of an I/O operation are available. For probes with
control objects, the number of open control objects is also a canonical telemetry. Each probe
can add additional telemetries, for example the JPA probe shows separate telemetries for query
counts and entity operation counts.

96

JDBC

4 o, Call Tree 1, Hot Spots 7 Connection Leaks 0 Telemetries » DB connectons and o of statoments

Available probe telemetries: | Overview -

Q- Filter Executed Statements
[Average Statement Execution Time
Fecorded Open Connections

Executed Statements

5

200 ms
Average Statement Execution Time /N\/\/\/\

0ms

nnnnn Amd N s e x

Row height: I p ﬁ |"|

The hot spots view and the control objects view show cumulated data that can be interesting to
track over time. These special telemetries are recorded with the probe tracker. The easiest way
to set up tracking is to add new telemetries with the Add Selection to Tracker action from the hot
spots or control object views. In both cases, you have to choose if you want to track times or
counts. When tracking control objects, the telemetry is a stacked area graph for all different
probe event types. For tracked hot spots, the tracked times are split into the different thread
states.

acaIITree I\, Hot Spots .Telemeh'les Events .Tradcer lPA.’Hibananeop;;:iT,:E;;:‘: ‘l'
Show: | [Hot spot times] Query: select o from Order o where o.date >= :date ~ + x
""""""""""""""""""" TTTTTTT T TR T T T T eI TT 770771
0:10 0:20 0:30 0:40 0:50 1:00 1
&
900 ms o
800 ms E i ‘
700 ms f
600 ms f
500 ms E
400 ms E
300 ms E
200 ms f
100 ms f j
= Runnzble : 668.2ms == YWaitng : Oms = Blocked : Oms == NetI0: 148.2ms mm Total time: §16.5me ,{D ,9 |- -|
JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can expand
single events to see the associated JDBC events if the JDBC probe was recorded along with the
JPA probe.

97

. JPA/Hibernate
Call Tr Hot Spots Telemetri Events Tracker
ak Cal Tree 1, Fot Spa B Tefemetries Ve B Tracker IPA/Hibernate operations and statistics

Show events: | All types v Filter -
Start Time « Event Type Duration Description Thread
871 ms select o from Order o where o.date >= :date Servlet request simulato... A
131 ms SELECT *FROM ORDER. O WHERE Q.DATE ==7 Servlet request simulato. ..
165 ms SELECT *FROM ORDER O WHERE O.DATE »=7 Servlet request simulato. ..
AL 105 ms com. ejt. demo, server, entities, Customer Servlet request simulato. ..
. ok Insert 196 me com.gjt.demo, server, entities, Order Servlet request simulato, .,
. & remove 84,846 ps com.ejt.demo. server. entities. Order Servlet request simulato. ..
.ok Insert 150 ms com.ejt.demo, server, entities, Customer Servlet request simulato. ..
. o Insert 160 ms com.gjt.demo. server, entities, Order Servlet request simulato. ..
O Query 960 ms select o from Order o where o.date »= :date Servlet request simulato. ..
.ok Insert 127 ms com.ejt.demo, server, entities, Customer Servlet request simulato. .. v
R iem - - e
22,053 ms
[~ Direct operation ~
avax.persistence, TypedQuery.getResultlist()
com.ejt.demo, server, handlers. RequestHandler execute JpaQuery(javax. persistence EntityManager)
com.ejt.demo, server, handlers.RequestHandler. make JpaCall()
com.ejt.demo. server. handlers. RequestHandler. per form\Work()
com.ejt.demo. server. handlers.RequestHandler. run() w

Similarly, the hot spots view adds a special "JDBC calls" node to all hot spots that contains the
JDBC calls that were triggered by the JPA operation. Some JPA operations are asynchronous and
are not executed immediately, but at some arbitrary later point in time when the session is
flushed. When looking for performance problems, the stack trace of that flush is not helpful, so
JProfiler remembers the stack traces of where existing entities have been acquired or where
new entities have been persisted and ties them to the probe events. In that case, the back traces
of the hot spot are contained inside a node that is labelled "Deferred operations", otherwise a
"Direct operations" node is inserted.

JPA/Hibernate
2, Call Tree i\, Hot Spots B Telemetries Events B Tracker 1P Hibarnate aperations and statistics "'
Thread selection: . All thread groups ~ | Aggregation level: @ Methods w
Thread status: |0 All states ~
Hot Spot Time « Average Time Events
=) ,O Query: select o from Order o where o.date >=:date I 14,736 ms (70 %) 73 ms 20
= @ 1DBC calls

W 3,043 ms - 20 evt, SELECT * FROM ORDER O WHERE O.DATE >=7
= | —70.3% - 14,736 ms - 20 hot spot evt. Direct operations
n 70, 3% - 14,736 ms - 20 hot spot evt, javax. persistence. TypedQuery.getResultlist
=1 @— 70.3% - 14,736 ms - 20 hot spot evt. com.ejt.demo.server.handlers.RequestHandler, execute JpaQuery
BQ_ 70.3% - 14,736 ms - 20 hot spot evt. com.ejt.demo.server. handlers RequestHandler.make JpaCall
E}--@ B 70.3% - 14,736 ms - 20 hot spot evt. com.ejt.demo.server . handlers.RequestHandler.performiork
9-@— 70.3% - 14,736 ms - 20 hot =pot evt. com.ejt.demo.server.handlers. RequestHandler.run

-G 18,2% - 3,815 ms - 5 hot spot evt, HTTP: /demo/fview2
W 17.1% - 3,591 ms - 5 hot spot evt, HTTP: fdemofwiew4
-Gl 14.9% - 3,125 ms - 4 hot spot evt. HTTP: fdemo/view3
[+ W 10.1% - 2,118 ms - 3 hot spot evt. HTTP: jdemofview5
(-8 9.9% - 2,085 ms - 3 hot spot evt. HTTP: /demo fview1
==k Insert: com.ejt.demo.server.entities, Order I G684 ms (17 %) 184 ms 20

- /@ 1DBC calls
i 11,225 ms - 20 evt, INSERT INTO ORDER (ID, NAME, OFTIONS) VALUES (7, 7, 7)
I 1,224 ms - 20 evt. INSERT INTO ORDER _CUSTOMER (ORDER _ID, CUSTOMER_ID) VALUES (7, 7)
= T ™ 17.6% - 3,684 ms - 20 hot spot evt. Deferred operations
=0 W 17.6% - 3.AR4 me - 20 hat snat evt, favay.nersistence. FntituMananer.nersist v

Payload View Filters =

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else, either
on one or multiple other threads in the same JVM or in another process. For such probes, the
back traces in the hot spots are sorted into "Direct operations" and "Async operation" container
nodes.

A special problem in the JDBC probe is that you can only get good hot spots if literal data like IDs
is notincluded in the SQL strings. This is automatically the case if prepared statements are used,
but not if regular statements are executed. In the latter case, you will likely get a list of hot spots,
where most queries are executed just once. As a remedy, JProfiler offers a non-default option
in the JDBC probe configuration for replacing literals in unprepared statements. For debugging

98

purposes, you may still want to see the literals in the events view. Deactivating that option reduces
memory overhead, because JProfiler will not have to cache so many different strings.

@ Session Settings X

Database probes for RDBMS, Big Data and NoSQL databases:

—
IDBC [record events, annotate into call tree view]
Application Enabled %
Settings
Record sin
Filter connection leak analysis
Settings s of pre atements for single ey

place literals in unprepared statements @

o]

Profilin
Sethnggs ‘ JPAMibernate [record events, annotate into call tree view]
g MongoDB

| g Cassandra
Triggers
Settings E HEase
Database
Settings

-

General Settings _OK Cancel

On the other hand, JProfiler collects the parameters for prepared statements and shows a
complete SQL string without placeholders in the events view. Again, this is useful when debugging,
but if you do not need it, you can switch it off in the probe settings in order to conserve memory.

JDBC connection leaks

The JDBC probe has a "Connection leaks" view that shows open virtual database connections
that have not been returned to their database pool. This only affects virtual connections that
are created by a pooled database source. Virtual connections block a physical connection until
they are closed.

JDBC

4 Connections Call Tree 1, Hot Spots 7 Connection Leaks »
| & . " - IDBC cannactions and execution of statements

This view shows all virtual connections that have been open for more than 10 seconds. Virtual connections are what you get from connection pools and block a
physical connection until they are dosed.

Connections of type "Undosed collected” are definite lesks while "Undosed” connections are strong candidates.

Show virtual connections: | All types w | | G Filter ~
Opened At & Open Since Type Description Thread Class Name
1dt-c:hsqldh:hsql:m(-calh(-stj'test pool-1-thread-2 [main] [com.sun.proxy.$Pr...
0:07.045 [Jan 22, ... 12,987 ms B Undosed co... jdbc:hsgldb:hsgl:/localhost/test pool-1-thread-2 [main] com.sun.proxy.SPr...
0:13.502 [Jan 29, ... 6,529 ms B Undosed co... jdbc:hsgldb:hsgl:/flocalhost/test pool-1-thread-2 [main] com.sun.proxy.$Pr...
Stack trace:

javax.sql.DataSource. getConnection ()

jdbc. JdbcTestWorker.call()

jdbc. JdbcTest\Worker.call()

java.util. concurrent. ThreadPoolExecutor $Worker,run{)

There are two types of leak candidates, "unclosed" connections and "unclosed collected"
connections. Both types are virtual connections where the connection objects that have been
handed out by the database pool are still on the heap, butcl ose() has notbeen called on them.
"Unclosed collected" connections have been garbage collected and are definite connection leaks.

99

"Unclosed" connection objects are still on the heap. The greater the Open Since duration, the
more likely such a virtual connection is a leak candidate. A virtual connection is considered as a
potential leak when it has been open for more than 10 seconds. However, cl ose() may still be
called on it, and then the entry in the "Connection leaks" view would be removed.

The connection leaks table includes a Class Name column that shows the name of the connection
class. This will tell you which type of pool has created the connection. JProfiler explicitly supports
a large number of database drivers and connection pools and knows which classes are virtual
and physical connections. For unknown pools or database drivers, JProfiler may mistake a physical
connection for a virtual one. Since physical connections are often long-lived, it would then show
up in the "Connection leaks" view. In this case, the class name of the connection object will help
you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled. There
is a separate recording button in the connection leaks view whose state corresponds to the
Record open virtual connections for connection leak analysis check box in the JDBC probe settings.
Just like for event recording, the state of the button is persistent, so if you start the analysis once,
it will automatically be started for the next probe recording session.

B @& N f =
£ £ T S % Tt E 0 € 2
Stan Stop Stan Wiz Stop Probe Stop Freeza

Add
cordings Recordings Tracking Bockmark Settings | HElP I0BC Leaks | Wiew
Profiling View specific

Run GC Export

JDBC

4 Connections Call Tree I, Hot Spots 7 Connection Lezks »
; e . P - JDEC connections and execution of statements

This view shaws all virtual connections that have been open for more than 10 seconds, Virtual connections are what you get from connection pools and block a
physical connection until they are dosed.

Connections of type "Undlosed collected” are definite leaks while "Undosed” connections are strong candidates.

Payload data in the call tree

When looking at the CPU call tree, it is interesting to see where probes have recorded payload
data. That data may help you to interpret the measured CPU times. That is why many probes
add cross-links into the CPU call tree. For example, the class loader probe can show you where
class loading has been triggered. This is otherwise not visible in the call tree and can add
unexpected overhead. A database call that is otherwise opaque in the call tree view can be further
analyzed in the corresponding probe with a single click. This even works for call tree analyses
where the analysis is automatically repeated in the context of the probe call tree view when you
click on the probe link.

Thread selection: a All thread groups ~ | Aggregation level: @ Methods w

Thread status: = Runnable ~ | View mode: = Tree w

- () N 47, 4% - 394 ms - 1inv. jdbc.JdbcDemo. main
£ V) m 42,6%: - 353 me - 5 inv. java.util.concurrent. ThreadPoolExecutor $Warker . run
=} @- 42,6% - 353 ms - 5inv. jdbc. JdbcTestwWorker, cal
= W 42,6% - 353 ms - 5inv. jdbc, JdbcTestWorker.call
W 14.1% - 116 ms - 15 inv. javax.sql.DataSource.getConnection
12.9% - 107 ms - 15 inv. jdbc. JdbcTestWorker . testStatementsPath1
@I 6.6% - 54,663 ps - 15 inv. jdbc. JdbcTestWorker. testStatement
- @ [§5. 1% - 50,493 ps - 28 inv, java.sql.Statement.executeQuer
- J® IDBC calls Show in probe call tree
% 0.5% - 3,868 ps - 15inv. java.sql.Connection.createStatement

0.0% - 82 ps - 13 inv. java.sgl.Statement. dose
-1 6.3% - 52,591 ps - 13 inv. jdbe.JdbeTestWorker. testPreparedStatement
B 10,3% - 85,682 pz - 13 inv, jdbc. JdbcTestWarker, testStatementsPath2
0.1% - 1,144 ps - 9 inv. java.sgl.Connection.dose
0.0% - 43 ps - 15inv. java.lang. Thread.interrupted

15,1% - 42,252 ps - 1inv, java.lang.System.gc
- 82,825 ps - 1inv. java.awt. EventDispatchThread.run

Call Tree View Filters ~ | @

100

Another possibility is to show the payload information inline directly in the CPU call tree. All
relevant probes have an Annotate in call tree option in their configuration for that purpose. In
that case, no links into the probe call tree are available. Each probe has its own payload container
node. Events with the same payload names are aggregated and the number of invocations and
total times are displayed. Payload names are consolidated on a per-call stack basis, with the
oldest entries being aggregated into an "[earlier calls]" node. The maximum number of recorded
payload names per call stack is configurable in the profiling settings.

Thread selection: . All thread groups

~ | Aggregation level: @ Methods ~
Thread status: == Runnable ~ | View mode: = Tree ~
FF]- 1) N 58.0% - 32,197 ms - 9 inv. java.utl.concurrent. ThreadPoolExecutor $Worker.run -~

(=] . 41, 3% - 22,901 ms - 7inv. com.ejt.demo.server. DemoServer$3.run
=2 al 11,2% - 6,232 me - 7inv. HTTP: fdemofviewd
W 11,2% - 6,232 ms - 7 inv. com.ejt.demo.server,handlers.RequestHandler. run
B 11,1% - §,144 ms - 7inv. com.ejt.demo.server.handlers.RequestHandler.perform\Work
0.2% - 87,440 ps - 7 inv. com.ejt.demo.server handlers. RequestHandler .workWithGlobalResource
.99 - 4,826 ms - S inv. HTTP: /demojview2
@ 0 3.9% - 4,926 ms - & inv. com.ejt.demo.server.handlers. RequestHandler.run
[—}-0 1 8.7% - 4,845 ms - 6 inv. com,ejt.demo. server,handlers,RequestHandler.performork
=] @ 1 8.2% - 4,553 ms - & inv. com.ejt.demo,server.handlers.RequestHandler . make JpaCall
E}--@ 16.7% - 3,740 ms - 6 inv. com.ejt.demo.server.handlers.RequestHandler. execute JpaQuery
El @ 16.4% - 3,561 ms - 6 inv. javax.persistence. TypedQuery.getResultlist
(=T} -crsistence operations
i 1 3,558 ms - 6 evt, Query: select o from Order o where o.date == :date
BC calls
4,608 ps - 6 evt. SELECT * FROM ORDER. O WHERE O.DATE >=?
0.3% - 176 ms - 6 inv. com.ejt. mock. MockHelper .runnable
0.0% - 1,541 ps -6 inv, javax.persistence. EntityManager . createQuery
0.0% - 472 ps - linv. javax.persistence.EntityManager.remove
0.0% - 33 ps - 12inv. java.utl.Random.nextInt
0.0% - 21 ps - 6 inv, java.util.List.size
o 0.0% - 10 ps - 1inv. java.util.List.get
g 1.4% - 792 mg - 6 inv. javax.persistence EntityManager. flush

0.0% - 12,334 ps - 6 inv. com.ejt.mock. jpa.MockEntityManager. <init>
0,0% - 1,437 ps - 6 inv. com.ejt.demo,server.handlers.RequestHandler, createOrder w

Q- Call Tree View Fiters

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree. Rather,
they split the call tree for each different probe string. This is especially useful for server-type
probes, where you want to see the call tree separately for each different type of incoming request.
The servlet probe intercepts URLs and gives you fine grained control over what parts of the URL

should be used for splitting the call tree. By default, it only uses the request URI without any
parameters.

@) Session Settings X
9

Y

Built-In Probes Script Probes Custom Probes

' Built<in probes for JEE and 15E:

Filter (Servlets [record events]

Settings
Enabled
r .
EEF. Record e eve
[} 5 events
Profiing E S
Settings URL splitting in the call tree:
ipt: Edit Scripts ?

Triggers - INDI [record events, annotate into call tree view]
Settings

—" IMS [record events, annotate into call tree view]

; (‘x’) RMI [record events]
Database 0 Web Services [record events]
Settings e Class Loaders

° Exceptions

EEE @ Sockets

Probes Loman e
-

General Settings Cancel

101

For more flexibility, you can define a script that determines the split string. In the script, you get

the current j avax. servlet. http. Ht pServl et Request as a parameter and return the
desired string.

© Edit
Settings Edit Search Code Help

XN W

Show
Unda Reda Copy Cut Paste Histery

&

Test
Compile

e

Help

® &

Find Replace

Please enter an expression {no trailing semicolon) or a script {ends with a return statement) that consists of regular Java code. The
following parameters are available:

- com. jprofiler.api.agent. ScriptContext scriptContext
- javax.servlet.http. HttpServietRequest serviet!

The expected return type is java.lang.String

Script:

J.li:r.l:c:': javax.servlet.http.HrtpSession;]

4 ir

5 HttpSession session = servletRequest.getSession(false);
6if (session '= mull) {

7 Object user = session.getAttribute ("user™);
8 if (user != null) {

9 return user.toString();

10] else |

11 return "Unauthenticated™;

12 1

13} else |

14 return null; Do not split
15}

conce

What's more, you are not limited to a single splitting level, but can define multiple nested splittings.
For example, you can split by the request URI first and then by the user name that is extracted

from the HTTP session object. Or, you can group requests by their request method before splitting
by the request URI.

@ Edit Scripts x

‘You can split requests on multiple nested levels. For example, you can split by IP address first and then split
by the request path.

The grouping expression for each level is defined by the return value of a script. When adding new scripts,
some example entries help you to get started.

Sarigt &+
servietRequest. getRequestURI(Edit Script x
servietRequest getMethod() Edit Script

mport javax.serviet.http. HttpSession; [...] Edit Script

)

@b Concel

By using nested splittings, you can see separate data for each level in the call tree. When looking
at the call tree, a level might get in the way and you would find yourself in need of eliminating it
from the servlet probe configuration. More conveniently and without loss of recorded data, you

can temporarily merge and unmerge splitting levels in the call tree on the fly by using the context
menu on the corresponding splitting nodes.

102

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: == Runnable ~ | View mode: = Tree ~
Er- 1) N 58.0% - 32,197 ms - 9 inv. java.util.concurrent. ThreadPoolExecutor SWorker.run
- T) m—. 41,3% - 22,901 ms - 7inv. com.ejt.demo.server.DemoServer §3.run

=8 a 11.2% - 6,232 me - 7inv. HTTP: jdemo/viewd

=- W 11,2% - 6,232 ms - 7 inv. com.&jt.demo,server,handlers,RequestHandler.run
B 11,1% - 6,144 ms - 7inv, com,ejt.dema.server.handlers.RequestHandler. performiWork
0.2% - 87,440 ps - 7 inv. com.&jt.demo.server. handlers. RequestHandler . workWithGlobalResource
=8 e n =
[=z Show Call Graph sstHandler.run
; squestHandler .performiWork
Add Method Trigger zquestHandler .workWithGlobalResource

' G} Add As Exceptional Method

-

= "< Split Method with a Script

B Intercept Method With Script Probe ndler.run

° i - P snMessage

[E:8 I)-r Merge splitting level Ctrl+Alt+ M IImsType.vaIues

[nsType. <dinit=

I 5= Remove Selected Sub-Tree Delete ar. <clinit>

iType.getDestination

.. @8 Restore Removed Sub-Trees Ctrl+Alt+S {Type.getDuration

Do Y Add Filter From Selection gn
© Show Tree Legend
1 Show Node Details Ctrl+Alt+|
cal1 @ Show Source F4 @

Splitting the call tree can cause considerable memory overhead, so it should be used carefully.
To avoid memory overload, JProfiler caps the maximum number of splits. If the splitting cap for
a particular split level has been reached, a special "[capped nodes]" splitting node is added with
a hyperlink to reset the cap counter. If the default cap is too low for your purposes, you can
increase it in the profiling settings.

103

MBean Browser
Many application servers and frameworks such as Apache Camel"” use JMX to expose a number
of MBeans for configuration and monitoring purposes. The JVM itself also publishes a number

of platform MxBeans “’ that present interesting information around the low-level operations in
the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM. The
remote management level of JMX for accessing MBean servers is not required, because the
JProfiler agent is already running in-process and has access to all registered MBean servers.

JProfiler supports the type system of Open MBeans. Besides defining a number of simple types,
Open MBeans can define complex data types that do not involve custom classes. Also, arrays
and tables are available as data structures. With MXBeans, JMX offers an easy way to create
Open MBeans automatically from Java classes. For example, the MBeans provided by the JVM
are MXBeans.

While MBeans have no hierarchy, JProfiler organizes them into a tree by taking the object domain
name up to the first colon as the first tree level and using all properties as recursively nested
levels. The property value is shown first with the property key in brackets at the end. The t ype
property is prioritized to appear right below the top-level node.

Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

=
w Telemetries Fiter [Attributes 3t Operations
com.ejt.demo

com.jprofiler.api.agent. mbe
Live memary » Pl ag Filter il

com.sun.management

0388

Databases

JEE &Probes

i3
- java.lang MHame Value

b Heap Walker {771 GarbageCollector [type] []'ava.\ang.managementMEmoryUsagE]

MemoryManager [typ<] .committed 203348032

MemoryPool [ty i init 268435456
I CPU views 1 L max 3808428032

it | used 11240400

— --NonHeapMemoryUs..‘ [izva.lang.management. MemoryUsage]
= Threads OperatingSystem [type] ObjectPendingFinali... 0

Runtime [type] Verbose false *
r? Tt - javaT:':adinD Ltype] .-ObjectMName java.ang:type =Memory

-] java.util.logging

&

MBeans

§

an
By

The following data structures are shown as nested rows:

* Arrays

Elements of primitive arrays and object arrays are shown in nested rows with the index as
the key name.

+ Composite data

All items in a composite data type are shown as nested rows. Each item can be an arbitrary
type, so nesting can continue to an arbitrary depth.

M https://camel.apache.org/camel-jmx.html
) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

104

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

* Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of j ava. uti | .

Map are mapped to a tabular data type with one key column and one value column. If the type
of the key is a simple type, the map is shown "inline", and each key-value pair is shown as a
nested row. If the key has a complex type, a level of "map entry" elements with nested key
and value entries is inserted. This is also the case for the general tabular type with composite
keys and multiple values.

Optionally, MBean attributes can be editable in which case an .~ edit icon will be displayed next
to their value and the Edit Value action becomes active. Composite and tabular types cannot be
edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a check box to choose the null state.

© Edit Attribute Value >

EditableCbjectMame |com.mycorp:type=controller il

Array elements are separated by semicolons. One trailing semicolon can be ignored, so 1 and
1; are equivalent. A missing value before a semicolon will be treated as a null value for object
arrays. For string arrays, you can create empty elements with double quotes ("") and elements
that contain semicolons by quoting the entire element. Double quotes in string elements must
be doubled. For example, entering a string array value of

"Test";"";;"enbedded "" quote";"A B";;
creates the string array
new String[] {"Test", "", null, "enbedded \" quote", "A;B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you define
an MBean telemetry line [p. 41] for a custom telemetry, an MBean attribute browser will be
shown that lets you choose an attribute that provides the telemetry data. When you are already
working in the MBean Browser, the Add Telemetry For Value action in the context menu provides
a convenient way to create a new custom telemetry.

105

Qi Filter

[Attributes @- Operations
""" com.ejt.demo
""" com. jprofiler. api.agent.mbean
— o P29 Q- Filter
com. sun.management
=7 java.lang MName Value

GarbageCollector [type]
7 MemoryManager [type]
+ 1 MemoryPool [type]
0 ClassLoading [type]

@--HeapMEmuryUsag
¢ ..committed
init

e

[izva.lang. management.Memarylisage]
203943032
268435456

i@ Compilation [type] i L.used / Edit Attribute Value
R &emory [typel - NonHeapMe ‘Add Telemetry For Value Usagel
0 OperatingSystem [type] biectPend
@ Runtime [type] erbose | &~ Find Ctrl+F
@ Threading [typ<] “-Objectiame |] Show Row Details Ctrl+Alt+]
""" java.nio
""" java.utillogging T Export View Ctrl+R
3 View Settings Ctrl+T

A telemetry can also track nested values in composite data or tabular data with simple keys and
single values. When you chose the nested row, a value path is built where path components are
separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface that are
not setters or getters.

Q- Filter

[7H] Attributes 4 operations
=7 com.ejt.demo
{8 standardTest [type]
@ est [type] Oy~ Filter .
b 0 Test [type]
""" com,jprofiler.api.agent.mbean Operation

" com,sun.management
0 DiagnosticCommand [type]

otSpotDiagnostic [type]

™ java.lang

-

"7 GarbageCollector [type]
" MemoryManager [type]

77 MemoryPool [type]

i {) ClassLoading [type]
@ compilation [type]

i Memory [type]

(ﬁ OperatingSystem [type]
-0 Runtime [type]
E---WT?'vreadng [type]

" java.nio

java.util.logging

I Invoke Operation I
2 Find

LI Export View

Ctrl+F

Ctrl+R

Ctrl+T

B View Settings

The return value of an operation may have a composite, tabular or array type, so a new window
with a content similar to the MBean attribute tree table is shown. For a simple return type, there
is only one row named "Return value". For other types, the "Return value" is the root element
into which the result is added.

106

@ Operation Result x

Q.- Filter v
Name Value
El-Return value [com. sun.management. VMOption]
name HeapDumpOnQutOfMemoryError
DEFALLT
; false
iritesble true

MBean operations can have one or more arguments. When you enter them, the same rules and
restrictions apply as when editing an MBean attribute.

@ Enter Operation Parameters X
java.lang.5tring pd |HeapDumpOnOutOfvemaryError [nult
java.lang.5tring p1 |true [nult

Conce

107

Offline Profiling

There are two fundamentally different ways to profile an application with JProfiler: By default,
you profile with the JProfiler GUI attached. The JProfiler GUI provides you with buttons to start
and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze the
results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows you to
start the profiled application with the profiling agent but without the need to connect with a
JProfiler GUL.

However, offline profiling still requires some actions to be performed. At least one snapshot has
to be saved, otherwise no profiling data will be available for analysis later on. Also, to see CPU
or allocation data, you have to start recording at some point. Similarly, if you wish to be able to
use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the API, you can programmatically
invoke all profiling actions in your code. In the api / sanpl es/ of f| i ne directory, there is a
runnable example that shows you how to use the controller APl in practice. Execute . . / gr adl ew
in that directory to compile and run it and study the Gradle build file bui | d. gr adl e to understand
how the test program is invoked.

The Controller APl is the main interface for managing profiling actions at run time. It is contained
in bi n/ agent . j ar inyour JProfiler installation or as a Maven dependency with the coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository

https://maven. ej -t echnol ogi es. conl repository

If the profiling APl is used during a normal execution of your application, the API calls will just
quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the class path
of your application during development, add profiling instructions to your source code and
recompile your code each time you make a change to the programmatic profiling actions.

Triggers

With triggers [p. 23], you can specify all profiling actions in the JProfiler GUI without modifying
your source code. Triggers are saved in the JProfiler config file. The config file and the session
ID are passed to the profiling agent on the command line when you start with offline profiling
enabled, so the profiling agent can read those trigger definitions.

108

@ Session Settings X

Triggers Qutput

—
Triggers defined for the current session:
Application

Settings Method invocation o
bezier BezierAnim$DemoControls, actionPerformed(java. awt. event, ActionEvent) "
' Timer x
Filter e Interval 10 minutes, offset 10 seconds
Settings
. ' CPU load threshold
"] 1. 80% CPU load
@ Heap usage threshold
Profiling m
Settings ! 80% of maximum heap size
Triggers
Settings
; N
Database
Settings A4
-
General Settings Cancel

In contrast to the profiling API, where you add API calls to your source code, triggers are activated
when a certain event occurs in the JVM. For example, instead of adding an API call for a certain
profiling action at the beginning or at the end of a method, you can use a method invocation
trigger. As another use case, instead of creating your own timer thread to periodically save a
snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs. Some of
these actions correspond to profiling actions in the controller API. In addition, there are other
actions that go beyond the controller functionality such as the action to print method calls with
parameters and return values or the action to invoke interceptor scripts for a method.

@ Trigger Wizard - Method invocation X
1. Trigger type Configure actions for this trigger

2. Spedify methods

3. Actions Configured actions:

Description 9 Print method invocation E‘
5. Group ID -

6. Finished E;' Run interceptor script x

Il On method entry:

H On method exit:

W ©On exception exit:

4 Back Mext p Finish Cancel

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline session by
invoking Session->Conversion Wizards->Convert Application Session To Offline from the main menu.
This will create a start script with the appropriate VM parameters and take the profiling settings
from the same session that you use in the JProfiler Ul. If you want to move the invocation to
another computer, you have to use Session->Export Session Settings to export the session to a
config file and make sure that the VM parameter in the start script references that file.

109

@ Convert local session to offline session x

1. Select local session Check required actions

2, Offine profiling

3. Locate output directory The conversion wizard has finished collecting all necessary information and is now
4. Check actions about to execute the required actions.

5. Finished

Flease check the summary below.

Conversion type: Convert local session to offline session
Application session: Animated Bezier Curve Demo
Qutput directory: G\Users\ingo

For offline profiling, a start script named start_session_offline_101.bat wil be
created in the output directory. Use this start saript to start offline profiling.

4 Back MNext B Finish Cancel

When profiling an application server with the integration wizards, there is always a start script
or config file that is being modified so that the VM parameters for profiling are inserted into the
Java invocation. All integration wizards have a "Profile offline" option on the "Startup" step in
order to configure the application server for offline profiling instead of interactive profiling.

© Integration Wizard X
L. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3, Profiled VM Flease choose whether you would like your remote application to wait for a connection
4. Startup mode from the JProfiler GUI frontend before starting up:

() wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at startup.
With this option you can profile the startup phase of your application.

() Startup immediately, connect later with the JProfiler GUI

[Easy] Profiing settings are transmitted directly by the JProfiler GUI once you
connect,

(®) Profile offine, JProfiler GUI cannot connect

[Advanced] You have to configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Finish Cancel

You may want to pass the VM parameter yourself to a Java call, for example if you have a start
script that is not handled by the integration wizards. That VM parameter has the format

-agentpath: <path to jprofilerti l|ibrary>=offline,id=<ID>[, config=<path>]

and is available from the [Generi ¢ appli cati on] wizard.

Passing of f | i ne as a library parameter enables offline profiling. In this case, a connection with
the JProfiler GUI is not possible. The sessi on parameter determines which session from the
config file should be used for the profiling settings. The ID of a session can be seen in the top
right corner of the Application settings tab in the session settings dialog. The optional confi g
parameter points to the config file. This is a file that you can export by invoking Session->Export
Session Settings. If you omit the parameter, the standard config file will be used. That file is located
inthe . j profil er10 directory in your user home directory.

110

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is shown
below:

pl ugi ns {
id "'comjprofiler' version 'X Y.Z
id'java'
}
jprofiler {
instalIDir = file('/opt/jprofiler")
}

task run(type: comjprofiler.gradle. TestProfile) {
offline = true
configFile = file("path/to/config.xm")
sessionld = 1234

Thecomjprofiler.gradl e.JavaProfil e task profiles any Java class in the same way that
you execute it with the standard JavaExec task. If you use some other method of launching
your JVM that is not directly supported by JProfiler, the comjprofiler.gradle.
Set Agent Pat hPr oper ty task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

set Agent Pat hProperty {
propertyName = 'agent Pat hProperty
offline = true
configFile = file("path/to/config.xm")
sessionld = 1234

and then use agent Pat hPr oper t y as a project property reference elsewhere after the task has
been executed. The features of all Gradle tasks and the corresponding Ant tasks are documented
in detail in separate chapters [p. 197].

Enabling offline profiling for running JVMs

With the command line utility bi n/ j penabl e, you can start offline profiling in any running JVM
with a version of 1.6 or higher. Just like for the VM parameter, you have to specify an of f| i ne
switch, a session ID and an optional config file:

jpenabl e --offline --id=12344 --config=/path/to/config.xm

With an invocation like this, you have to select a process from a list of running JVMs. With the
additional arguments - - pi d=<PI D> - - noi nput other you can automate the process so that
it requires no user input at all.

On the other hand, when enabling offline profiling on the fly, it may be necessary to manually
start some recordings or to save a snapshot. This is possible with the bi n/j pcontrol | er
command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched on and soj pcont r ol | er will not be able to connect. This includes the

111

case where you enable profiling with j penabl e, but without the of f| i ne parameter. If you
enable offline mode, the profiling settings are specified and j pcont rol | er can be used.

More information onthej penabl e andj pcont r ol | er executables is available in the command
line reference [p. 197].

112

Comparing Snapshots

Comparing the runtime characteristics of your current application against a previous version is
a common quality assurance technique for preventing performance regressions. It also can be
helpful for solving performance problems within the scope a single profiling session, where you
may want to compare two different use cases and find out why one is slower than the other. In
both cases, you save snapshots with the recorded data of interest and use the snapshot
comparison functionality in JProfiler by invoking Session->Compare Snapshots in New Window from
the menu or clicking the Compare Multiple Snapshots button on the Open Snapshots tab of the
start center.

© JProfiler Start Center >

Start Center

Open Session Quick Attach Mew Session Open Snapshots

Open a Single Snapshot

Use this option to analyze a snapshot in detail. All views are available just like for a live profiling session.

w Recent Snapshots

Use this option to re-open a recently opened snapshot.

Compare Multiple Snapshots

Use this option to compare certain aspects of different snapshots. JProfiler will switch to the snapshot
comparison window.

Start Close

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a number
of snapshots in the snapshot selector. Then you can create comparisons from two or more of
the listed snapshots by selecting the snapshots of interest and clicking on a comparison tool bar
button. The order of the snapshot files in the list is significant because all comparisons will
assume that snapshots further down in the list have been recorded at a later time. Apart from
arranging snapshots manually, you can sort them by name or creation time.

. w n »
A4 1 m o |[F i O
Memory CPU Telermetry Probe Start iew
Comparisn Comparison Cornparison Companson | Genter | E'P% Sapings HelP
Available Snapshots EF @
serverljps Sort By Creation Time
2017-11-22 18:04:22 Soit By Name

serverd.jps
2017-11-22 18:04:22

server3.jps
2017-11-22 18:04:22

Unlike for the views in JProfiler's main window, the comparison views have fixed view parameters
that are shown at the top instead of drop-down lists that let you adjust the parameters on the
fly. All comparisons show wizards for collecting the parameters for the comparison, and you can

113

perform the same comparison multiple times with the same parameters. The wizards remember
their parameters from previous invocations so you don't have to repeat the configuration if you
compare several sets of snapshots. At any point, you can shortcut the wizard with the Finish
button or jump to another step by clicking on the step in the index.

When a comparison is active, the snapshots that were analyzed are shown with number prefixes.
For comparisons that work with two snapshot, the displayed differences are the measurements
from snapshot 2 minus the measurements from snapshot 1.

\ . .

’ [] b] |

Mamary CPU Telematry Probe =t

i i i Cer
Available Snapshots o lQ

serverl.jps
2017-11-22 18:04:22

serverdjps
2017-11-22 18:04:22

server3.jps
2017-11-22 18:04:22

For the CPU comparisons, you can use the same snapshot as the first and second snapshot and
select different threads or thread groups in the wizard.

[CPU Comparison Wizard - Call tree comparison X

1. Choose comparison type
2. Select snapshots

3. Thread selection

4. View parameters

Choose the threads that should be compared

Please choose the thread or thread group for the comparison:

First snapshot:

@ Servlet request simulator 1 [main] w

Second snapshot: () Same as for first snapshot

(@) Different thread:

@ servlet request simulator 2 [main] ~

4 Back Mext p Finish Cancel

Comparisons with tables

The simplest comparison is the "Objects" memory comparison. It can compare data from the
"All objects", "Recorded objects" or the "Classes" view of the heap walker. The columns in the
comparison show differences for instance counts and size, but only the Instances Count column
shows the bidirectional bar chart where increases are painted in red and to the right, while
decreases are painted in green and to the left.

114

T Snapshot comparisen - JProfiler - m} X
File View Window Help
N n \ » + — 9
) u 2 o B
Merniory CPU Telemetry Prohe Star Wiew
: : : Corter | EWU gy el
Available Snapshots == |12 | Objects comparison
serverl.jps Objects: All objects
2017-11-22 18:04:22 Aggregation: Classes
| serverlips Mame Instance Count » Size
§ |char[] I 15,308 (+46 %) +2,789KE m
java.lang.String _ +5,954 (+27 %) +167 kB
2017-11-22 18:04:22 java utl HashMapSNode _ +5,267 (+43 %) +168 kB
com.=un.org.apache. xerces.internal xmi. QMame _ +4, 140 (+95 %) +132kB
java.lang.Object]] _ +2,695 (+36 %) +209 kB
ava.lang. StringBuilder _ +1,765 (+115 %) +42,360 bytes
java.lang.String[] - +1,624 (+58 %) +150 kB
com.sun.org.apache. xerces.internal utl. SymbalTa. .. - +1,305 (+91 %) +41, 760 bytes
int[] I +1,175 (+36 %) +534 kB
com.sun.org.apache. xerces.internal utl. XMLString... . +1,080 (+95 %) +25,920 bytes
byte[] I +1,050 (+48 %) +2,716 kB
com.sun. org.apache, xerces.internal, xni, XMLS tring . +990 {+95 %) +23,760 bytes
short[] W +852 (435 %) 442,950 bytes
java.utl.HashMap . +797 (+24 %) +38,256 bytes
java.utl, HashMapshode[] . +786 (+25 %) +88, 360 bytes
com.sun.org.apache. xerces.internal utls. XMLSecu. .. . +630 (+112 %) +30,240 bytes
com.sun, xml.internal ws.encoding HeaderTokeniz. .. . +630 (+110 %) +15,120 bytes w
Totak +72,286 (+48 %) 48,242 k8
O~ Class View Filters v @
4 x AW . Comparison 1y Comparison 2

In the view settings dialog you can choose whether you want this bar chart to display absolute
changes or percentages. The other value is displayed in parentheses. This setting also determines
how the column is sorted.

T Objects Comparison View Settings X

Size Scale

OF

@ OMixedunits (OMB OkB (O bytes

Primary Measure 0

(® Instance count

() Shallow size

Differences of Primary Measure 0

(® Sort by values

() Sort by percentages

[[] Show zero difference values)

[[] only show dasses that appear in both snapshots

o

The measurement in the first data column is called the primary measure and you can switch it
from the default instance counts to shallow sizes in the view settings.

115

< N
2 4

Memory]

T Snapshot comparison - JProfiler
File View Window Help

serverl.jps
2017-11-22 18:04:22

Available Snapshots

1Y LY f —
= o & e
Telerneatry Probe Start Wi
: : Corter | EWU gy el

== 12 | Objects comparison

Ohjects: All objects
Aggregation: Classes

[T' serverZjps Name

\ 2017-11-22 18:04:22]

(_- server3jps byte[]

\ 2 2017-11-22 18:04:22 intl]
java.lang.Object]]
iava.utl. HashMap hlode

Size -

I +2, 75 kB (+67 %)

+2,716 kB (+77 %) +1,050

I +554 B (48 %)
I +209 kB (+43 %)
B +168 kB (+43 %)

Instance Count
+15,308 &

+1,175
+2,695
+5.257

The context menu of the table gives you a shortcut into the other memory comparisons with
the same comparison parameters and for the selected class.

0Objects comparison

Objects: All objects
Aggregation: Classes

Name

char[]

java.lang.String
jzva.util. HashMapshode

Instance Count

I 5,054 (+27 %)

com, sun.org.apache. xerce Create Allocation Call Tree Comparison
java.lang.Object{] Create Allocation Hot Spot Comparison

java.lang. StringBuilder
ava.lang. String[]

com. sun.org.apache. xerce
int[] i Show Bytecode

Show Source

com,sun.org.apache, xerce

byte[] Sort Classes
com. sun.org.apache. xerce p Find
short[]

jzva.util. HashMap
java.util.HashMapshodel]
com.sun.org. apache., xerce View Settings

T Export View

Totalk

com. sun.xml.internal.ws. ercoTNg. HES0Er TOREMZ. .

F4

Ctrl+F
Ctrl+R

Ctrl+T
W FOSU(FIIU F]

472,286 (+48 %)

Size

+2,789kB A
+167kB

+132kB
+209 kB
+42,360 bytes
+150 kB
+41,760 bytes
+584kB
+25,920 bytes
+2,716 kB
+23,760 bytes
+42,960 bytes
+38,256 bytes
+88,360 bytes
+30,240 bytes
+15,120 bytes w

+8,242 kB

Class View Filters

- @

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot comparisons
are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can calculate
another tree that shows the differences between the selected snapshots. In contrast to the
regular call tree views, the inline bar diagram now displays the change, either in red for increases
or in green for decreases.

116

Call tree comparison

Thread selection: B8 Al threads
Thread status: = Runnable
Aggregation: Methods
Difference caloulation: Total call imes
r. java.util.concurrent. ThreadPoolExecutor $Worker.run A
@ 5,403 ms (+32 %) +6% inv, com,ejt.demo.server.handlers. WsHandlerImpl, getExchangeRate
=1 @— +5,403 ms (+32 %) +69 inv. com.ejt.demo.server. handlers. WsHandlerImpl.lookupExchangeRate
+ I +5,402 ms (+32 %) +69 inv. com.ejt.mock. MockHelper.runnable
+191 ps (+24 %) +69 inv. java.util.Random.nextInt
E} ﬂ- +1,355 ms (+33 %) +18 inv. RMI: 132, 168,218.1
B- @A@- +1,352 ms (+38 %) +18 inv. com.ejt.demo,server. handlers.RmiHandlerImpl.remoteOperation
=t ‘“ﬂ +1,352 ms {+38 %) +18 inv. com.ejt.demo.server.handlers.RmiHandlerImpl.performork
B +927 ms (+44 %) +18 inv. com.ejt.mock.MockHelper.runnable
U571 +310 ms (+26 %) +18 inv. com.ejt.demo. server. handlers. RmiHandlerImpl. makeWebServiceCalls
E}--@I +310 m= (426 %) +17 inv. com.ejt.demo.server.handlers.HandlerHelper. make\WebServiceCall
1 +310 ms (+40 %) +51inv, com.ejt.demo,server.handlers, WeHandler, getExchangeRate [com.sun.proxy. SProxy
+24 ps (40 %) +17inv. java.lang. ThreadLocal.get
Q +40 ps (+21 %) +18 inv. java.utl.Random.nextInt
=-#g7 +113 ms (+37 %) +19 inv. com.ejt.demo.server.handlers. RmiHandlerImpl.execute JdbcStatements
+111ms (+38 %) +13 inv. java.sgl.5tatement. executeQuery
+B825 ps (+32 %) +19inv, javax.naming, Context.lookup
+576 ps {+21 %) +19 inv. javax.sql.DataSource.getConnection
M8 4981 ns (436 9% +19inv. com.eit.mock. idhe MockConnection. createStatement N
< >
Class View Filters 7]

Depending on the task at hand, it may make it easier for you if you only see call stacks that are

present in both snapshot files and that have changed from one snapshot file to the other. You
can change this behavior in the view settings dialog.

‘r Call Tree Comparisen View Settings X
Time Scale
@ 2 € OMixedunits Os Oms Ops

Mode Description
Show percentage bar (7]
Always show fully qualified names)

[] Always show signature (7]

Time Differences (7]
(®) Sort by values

() Sort by percentages

[Show zero difference values &)

[] Cnly show call stacks that appear in both snapshots

For the CPU and probe call tree comparisons it may be interesting to compare the average times
instead of the total times. This is an option on the "View parameters" step of the wizard.

117

T CPU Comparison Wizard - Call tree comparison X

1. Choose comparison type Select view parameters
2. Select snapshots
3. Thread selection Please spedfy the following parameters that are necessary in order to calculate the
4. View parameters snapshot comparison:
Thread status: B Runnable w
Aggregation level: (D Methods -

Difference calculation: | (® Total call times

() Average call times

4 Back MNext B Finish Cancel

Telemetry comparisons

For telemetry comparisons you can compare more than 2 snapshots at the same time. If you
don't select any snapshots in the snapshot selector, the wizard will assume that you want to
compare all of them. Telemetry comparisons do not have a time axis, but show the numbered
selected snapshots as an ordinal x-axis instead. The tool tips contain the full name of the snapshot.

4 o m o = t 0O

Memory CPU Telemetry Probe Start Wiew

Conter | B Clngs HeER
Available Snapshots == 12| | Memory comparison
| serverljps Value type: Current value (when snapshot was saved)
2017-11-22 1B:04:22 Memory type: Heap
| serverljps
4 17-11- 3 ! 1
. ' &
! = J 2017-11-22 7ame b
E L
o \\
50 MB \
40MB
E \ J 2 (server2.ips)
30ME mm Used size: 20.57MB @
20 MB
10M8
. ged size /® /9 53
" x AV . Comparison 1 g, Comparison 2 ! Comparison 3

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard gives
you the option to use the value when the snapshot was saved, calculate the maximum value or
find the value at a selected bookmark.

118

T VM telemetry Comparison Wizard - Memory comparison

1. Choose comparison type Choose the comparison type
2. Select snapshots

3. Memory type One value is extracted from each snapshot for the comparison graph. Please select
4. Comparison type what kind of value should be compared:

5. Compared measurements

(® Current value (when snapshot was saved)
() Maximum value
() Value at bookmark.

[Choosze one]

Only bookmark names that exist in all snapshots are shown.

4 Back MNext B Finish Cancel

119

IDE Integrations

When you profile your application, the methods and classes that come up in JProfiler's views
often lead to questions that can only be answered by looking their source code. While JProfiler
provides a built-in source code viewer for that purpose, it has limited functionality. Also, when
a problem is found, the next move is usually to edit the offending code. Ideally, there should be
a direct path from the profiling views in JProfiler to the IDE, so you can inspect and improve code
without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for Intelli] IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The installer also offers this action to make
it easy to update the IDE plugin along with the JProfiler installation. JProfiler writes a property
file into the plugin directory that connects the plugin with the current installation directory of
JProfiler. In the IDE plugin settings, you can change the used version of JProfiler at any time. The
protocol between the plugin and the JProfiler GUI is backwards compatible and can work with
older versions of |Profiler as well.

@ General Settings X

DK and JREs Session Defaults Snapshots IDE EUpdabes Miscellaneous

IDE Integration
To integrate JProfiler with an IDE, choose the target IDE and dick on "Integrate” below.

Intelli] IDEA 2017.x v

[Jo

cance

The Intelli) IDEA integration can also be installed from the plugin manager. In that case, the plugin
will ask you for the location of the JProfiler executable when you profile for the first time.

On different platforms, the JProfiler executable is located in different directories. On Windows,
it's bi n\j profiler.exe, on Linux or Unix bi n/j profil er and on macOS there is a special
helper shell script Cont ent s/ Resour ces/ app/ bi n/ macos/j profiler.sh in the JProfiler
application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu contains a
Show Source action.

120

Aggregation level: | () Classes -
- Telemetries
MName Instance Count Size
char[] I, 5,725 2,611K8 A
‘ Live memary java.lang.String I 210 533kB
java.lang. StringBuil
All Objects int[] Show Selection In Heap Walker 15,965 kB
java.lang. Object]] Add Selection To Class Tracker 212k
Recorded Objects java.util.HashMapsh 112kB
'dk‘internal.urg.objel 5 Show Seurce [I 165 kB
Allocation Call Tree byte[] = 603 kB
java.lang.Class[] Show Bytecode 64,880 bytes
Allocation Hot Spots java.lang. Class N 270 kB
java.awt.Rectangle Mark Current Values 62,720 bytes
Class Tracker java.security, Access Remowve Mark 75,180 bytes
java.lang.ref. Weakr 49,856 bytes
i Heap Walker java.util.Hashtablesl Sort classes ¥ 44,576 bytes
java.lang Intsger p Find ChileF 20,272 bytes
sun.nio. fs. Windowsk 24,672 bytes
I CPU views sun.nio. fs. Windowsf ¢ Export View Ctrl+R 65,664 bytes
sun, nio, fe. WindowsR 49,248 bytes
— sun.java2d. pipe.Reg View Scttings CirlsT 35,240 bytes
. Threads java.lang.invoke Me 34,780 bytes
i java.lang.invoke MethodType$Concur... || 863 27,808 bytes w
n Totak 131,281 22,818kB
1 ITEEHEES Q.- Class View Filters ~ | @
=

If the session was not started from the IDE, the built-in source code viewer is shown that utilizes
line number tables in the compiled class files to find methods. A source file can only be found if
its root directory or a containing ZIP file is configured in the application settings

@ Session Settings X

Profiled WM Code Editor & Compilation

—
Session name : |Animated Bezier Curve Demo Id: 101 0

Application
Settings Session Type
‘ Attach to an zlready running Hotspot WM and profile it
I Attach Attach type: Select from all local JvMs Attach to remote VM
Filter o N dorafie
Settings e Leunch = news IVM and profile it

Launch | Launch type: (@ Application (0) Web Start

Application Settings

Profiling
Settings Java VM 1.8 [C:\Program Files\Java\jdk1.8.0_101%re] ~ Configure JREs
Working directory: [startup directory]
VM options: 0
Triggers
Settings Main class or executable JAR: |bezier BezierAnim
Program arguments: block 0
; [[] ©pen browser with URL
Database
Settings Java File Path
° demo'\bezierisrc +
Class path
JEE & o P x
Probes (®) Source pati: @]
O Library path) A
h'd

General Settings Cancel

Together with the source code display, a bytecode viewer based on the jclasslib bytecode viewer
) shows the structure of the compiled class file.

M https://github.com/ingokegel/jclasslib

121

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

= bezier.BezierAnim (Ch\Users\ingo'\projects\jprofilerdist\demotbezier\src) - JProfiler -] x

Viewer Window

s S
. Ganeral Information T 0
Canstant Fool Major version: 49 [1.5]
i # Interfaces
] Fields Constant pool count: 131
[Methods Access flags: 0x0021 [public]
Attributes This dass: @ info #20 <bezier [BezierAnim >
Super dass: @ info #35 <javax/swing/JApplet>
Interfaces count: 0
Fields count: 3
Methods count: 6
Attributes count: 2

S0urce Bytecode

If the session is launched from the IDE, the integrated source code viewer is not used and the
Show Source action defers to the IDE plugin. The IDE integrations support launched profiling
sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running or
debugging it. The JProfiler plugin will then insert the VM parameter for profiling and connect a
JProfiler window to it. JProfiler is running as a separate process and is started by the plugin if
required. Source code navigation requests from JProfiler are sent to the associated project in
the IDE. JProfiler and the IDE plugin cooperate to make window switching seamless without
blinking task bar entries, just as if you were dealing with a single process.

When starting the session, the "Session startup" dialog lets you configure all profiling settings.
The configured profiling settings that are used for a launched session are remembered by JProfiler
on a per-project or on a per-run-configuration basis, depending on the IDE integration.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE with
the File->Open action or by double-clicking on it in the project window. Source code navigation
from JProfiler will then be directed into the current project. Finally, the IDE plugin adds an Attach
to JVM action to the IDE that lets you select a running JVM and get source code navigation into
the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in mind. For
that purpose, the tool bar in the JProfiler window has an Activate IDE button that is shown for
profiling sessions that are opened by an IDE integration. The action is bound to the F11 key, just
like the JProfiler activation action in the IDE, so you can switch back and forth between the IDE
and JProfiler with the same key binding.

lerfé’sé-gﬁf_*?g_ﬁ_f

Start |Activate | Save Session Start Stop Statt Add Expart Wiaw Help Aud Configure
Center | IDE |Snapshet Settings | Recordings Recordings Tracking Bookmark Settings Telemetry Telemetries

Filter w
Telemetries
..

i [[| |
0:10 0:20 0:30 0:40
QOverview 300 MB ‘ ~

Intelli) IDEA integration

wlul'

| 4

Run GC

To profile your application from Intelli] IDEA, choose one of the profiling commands in the Run
menu, the context menu in the editor, or click on the corresponding toolbar button.

122

v > [0 @S s B0 ¥ Q

GOLN Tools VC5 Window Help

P Run ‘Main' Shift+F10
#£ Debug 'Main' Shift+F9
¥ Run 'Main’ with Coverage

@ Profile 'Main'

P Run.. k Alt+5hift+F10

#¥ Debug... Alt+Shift+F9
Attach to Local Process...

[Edit Configurations...

3 Import Test Results 4
Stop Ctrl+F2
Show Running List
Reload Changed Classes
Restart Activity
Step Over F&

Alt+Shift+Fa
Copy Reference Ctrl+Alt+Shift+C
[l Paste Ctrl+V
Paste from History... Ctrl+Shift+V
Paste Simple Ctrl+Alt+Shift+V

Column Selection Mode Alt+Shift+|nsert

Find Usages Alt+F7
Refactor b
Folding »
Analyze »
Go To »
Generate... Alt+Insert
Recompile 'Main.kt' Ctrl+Shift+F9
’ Run 'bytecode viewer' Ctrl+Shift+F10

#¥ Debug 'bytecode viewer'
¥ Run 'bytecode viewer' with Coverage
@ Profile 'bytecode viewer'

K Select 'bytecode viewer'

I nral Hicknne .

JProfiler can profile most run configuration types from IDEA, including applications servers. To
configure further settings, edit the run configuration, choose the Startup/Connection tab, and
select the JProfiler entry. The screen shot below shows the startup settings for a local server
configuration. Depending on the run configuration type, you can adjust JVM options or retrieve
profiling parameters for remote profiling.

Servar‘ Deploymam:| Logsl Code Coverage Startup/Connection
P Run

‘3{ Debug
¥ Coverage

@ IProfiler

Startup script: | C\Users\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat run |@ Use default
Shutdown script: | ChAlUsers\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat stop HE‘ Use default
Environment Variables
Pass environment variables

Name | Value -

JAVA_OPTS -agentpath: C:\Users\ingohprojectsjprofilerdist\bin\windows-x6...

Project-specific L[] Skip session startup dialog

Debug parameters for profiling agent: | ‘

Use profiling settings:

Server JVM: | Ci/Program Files/Java/jdk1.8.0_101

¥ Rafara lanmche Brild Ackieata Fanlaind o

123

The profiled application is then started just as with the usual "Run" commands. Precise source
code navigation is implemented for Java and Kotlin.

On the JProfiler tab of the IDE settings, you can adjust the used JProfiler executable and whether
you always want to open a new window in JProfiler for new profiling sessions.

Settings >
I) .
I\D\) Tools > JProfiler
Appearance & Behavior JProfiler executable: | Ch\Users\ingohprojects\jprofileridist\binjprofiler.exe D
Keymap] Always open new windows in JProfiler
Editor
Plugins

Version Control
Build, Execution, Deployment
Languages & Frameworks
Tools

‘Web Browsers

External Tools
Terminal (=
Diff & Merge

PsiViewer

B (] [) []

The JProfiler tool window in IDEA is shown when you profile a run configuration from IDEA, when
you open a JProfiler snapshot or when you attach to a running JVM.

JProfiler I bytecode viewer

(& | [E console | @ JProfiler

u
= —
€M @ J ApplyGrph F Recordings: @ s @
21820 Methe Total Time Self Time
v Thread state: | Runnable n
| Proceed | g &pply Graph

For more optians. creste the graph in JProfiler instead

¥+ 2: Favarites

The action in the tool bar with the JProfiler icon activates the JProfiler window. On the right side
of the tool bar, several toggle buttons give access to important recording actions in JProfiler. If
a recording is active, the corresponding toggle button is selected.

Of particular relevance is the CPU recording action, because CPU graph data can be shown directly
in the IDE. The only parameter for graph calculation that is offered in the IDE is the thread status.
To configure advanced parameters like thread selection or to use the call tree root, call tree
removal and call tree view filter settings from the call tree view, you can generate the graph in
the JProfiler window, it will then be shown in the IDE as well.

When you calculate a graph, the list of hot spots will be populated and the source code will be
annotated with gutter icons for incoming and outgoing calls. The popup on the gutter icons
shows an inline graph, clicking on a method will navigate to it. The list of hot spots shows you
interesting entry points for analyzing the graph. When double-clicking on a table row, the source
code is shown.

124

ETN 2 . P frem1 e o Thannl iyt
Choose outgoing calls

60,283 pus (4 inv.) org.git.jclasslib.browser.FrameContentéTabbedPaneWrapper.<init>

6,048 p8 (1 inv.) javax.swing.JPanel.<init>

783 ps (1 inv.) org.gjt.jclasslib.browser.FrameContent.split

559 ps (1 inv.) org.gjt.jclasslib.browser.FrameContent$Position.<clinit>
11 ps (1 inwv.) org.gjt.jclasslib.browser.FrameContent.get

8 us (1 inv.) org.gjt.jclasslib.browser.FrameContent$Position.values

ps (4 inv.) java.util.Collection.add

ps (1 inv.) jeva.util.Arraylist.<init>

ps (1 inv.) kotlin.jvm.internal.Intrinsics.checkParameterIsNotHull

PN

us (1 inv.) java.awt.BorderLayout.<init>

This method: 68,048 ps total time, 1 invocation € Show in JProfiler

+

fun focus(focusedTabbedPane: BrowserlabbedPane) {
this. focusedTabbedPane = focusedlabbedFane
¥

Frm ~lneall1Taha il f

The Show in JProfiler button contains actions that activate the JProfiler window, either the selected
node in the method graph or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls" analysis is offered, for the incoming calls, the
"Backtraces" analysis is shown. All these actions are also available in the context menu of the
hot spot list or as keyboard actions.

gode Analyze Refactor Build Run Jools VC5 Window Help

Class... Crle N Syser) f; FrameContent.kt 1t | Ko bytecode viewer v | P fE ¥

@z S ¢y FrameContent.kt x | € JFramejava * | & BrowserFramekt
Symbol... Ctrl+Alt+Shift+ N
Custom Folding... Cirl+ Alt+Period
= Ctrl+G / This library is free software: you can redistribute
4 Back Ctrl+Alt+Left package org.git.jclasslib.browser
import ...
class FrameContent (val frame: BrowserFrame) : JPanel()
Bookmarks]
Select In... Alt+F1 val wrappers = Position.values().map { TabbedPaneR
Jump to Navigation Bar Alt+Home
) private var splitMode: SplitMode = SplitMode.NONE
Declaration Ctrl+B
Implementation(s) Ctrl+Alt+B var focusedTabbedPane: BrowserIabbedPane = wrapper
Type Declaration Ctrl+Shift+B
Super Method Ctrl+U val selectedTab: BrowserTab?
B : get() = focusedTabbedPane.selectedTab
Test Ctrl+Shift+T -
Related Symbol... Ctrl+Alt+Home init {
Incoming Profiled Calls Ctrl+ Alt+Shift+8
E= SrEnme Ctrl+F12 Outgoing Profiled Calls Ctrl+ Alt+Shift+9
File Path Ctrl+Alt+F12 Show This Method In JProfiler Ctrl+Alt+Shift+0, M
Show Backtraces In JProfiler Ctrl+Alt+Shift+0, B
Show Cumulated Outgoing Calls In JProfiler Ctrl+Alt+Shift+0, O
Show In Hot Spots Ctrl+Alt+Shift+0, H
Mext Highlighted Error F2 fun closekllTabs() {
Drevinne Hinhlinhter Frrar Shift+F7 wrappers.forEach | it.tabbedPane.removeRll{) }

eclipse integration

The eclipse plugin can profile most common launch configuration types including test run
configurations and WTP run configurations. The eclipse plugin only works with the full eclipse
SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Run menu
or click on the corresponding toolbar button. The profile commands are equivalent to the debug
and run commands in eclipse and are part of eclipse's infrastructure, except for the Run->Attach
JProfiler to JVM menu item which is added by the JProfiler plugin.

125

S eclipse-workspace - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

mruafo]e-wis-o-Reaiweids v il o oDy

h Project Run Window Help

o - Q- Q. Run Ctrl+F11
#, Debug F11
8; Profile
=, Coverage Last Launched Ctrl+Shift+F11

Profile History >

Profile As >

Profile Configurations...

Run History >

Run As >

Run Cenfigurations...

Debug History >

Debug As >

Debug Cenfigurations...

Coverage History >

Coverage As >

Coverage...

Toggle Breakpoint Ctrl+Shift+B
@ Toggle Tracepoint

Tannle | ine Rrealnnin

If the menu item Run->Profile ... does not exist in the Java perspective, enable the "Profile" actions
for this perspective under Window->Perspective->Customize Perspective by bringing the Action Set
Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be adjusted
in eclipse under Window->Preferences->/Profiler.

NetBeans integration

In NetBeans, you can profile standard, free form and maven projects. For free form projects,
you have to debug your application once before trying to profile it, because the required file
nbproj ect /i de-targets.xnl is set up by the debug action. JProfiler will add a target named
"profile-jprofiler" to it with the same contents as the debug target and will try to modify the VM
parameters as needed. If you have problems profiling a free form project, check the
implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat server
configured in NetBeans. When your main project is a web project, selecting Profile main project
with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to use a
GlassFish Server, selecting Profile main project with JProfiler starts the application server with
profiling enabled.

To profile your application from NetBeans, choose one of the profiling commands in the Run
menu or click on the corresponding toolbar button.

@ NetBeans IDE

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

t] E‘ g L_éj <default config> ~ v' B[Er Dé‘} D T v C") y

126

bug |Profile Team Tools Window Help |§

> |@

Profile Main Project With JProfiler Ctrl+Shift+F3
Profile File With JProfiler

@

@

cE

©

=

= T =

T@E

&

Profile Project (C:\Users\ingo\Documents\NetBeansProjects\maven) Ctrl+F2
Profile File

Profile Test File

Attach to Project

Attach to External Process

Finish Profiler Session Shift+F2

Take Thread Dump
Take Heap Dump...

Run GC
Take Snapshot of Collected Results Alt+F2
Reset Collected Results Alt+5hift+F2

Insert Profiling Point...

127

A Custom Probes

A.1 Probe Concepts

To develop a custom probe for JProfiler, you should be aware of some basic concepts and
terminology. The common basis of all of JProfiler's probes is that they intercept specific methods
and use the intercepted method parameters and other data sources to build a string with
interesting information that you would want to see in the JProfiler Ul.

The initial problem when defining a probe is how to specify the intercepted methods and get an
environment where you can use the method parameters and other relevant objects for building
the string. In JProfiler, there are 3 different ways to do that:

+ Ascript probe [p. 134] is completely defined in the JProfiler Ul. You can right-click a method
in the call tree, choose the script probe action and enter an expression for the string in a
built-in code editor. This is great for experimenting with probes, but only exposes a very limited
segment of the capabilities of custom probes.

+ The embedded probe [p. 143] API can be called from your own code. If you write a library, a
database driver or a server, you can ship probes with your product. Anybody who profiles
your product with JProfiler, will get your probes added automatically to the JProfiler Ul.

+ With the injected probe [p. 138] API, you can write probes for 3rd party software in your IDE
using the full capability of JProfiler's probe system. The APl makes use of annotations to define
the interceptions and to inject method parameters and other useful objects.

Profiled JVM

s N

Profiled application

Embedded (e
probe @
Injected
probe

JProfiler Ul N

Script .
probe

Profiling
agent

The next question is: what should JProfiler do with the string that you have created? There are
two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create a probe event. The event has a description
thatis set to that string, a duration that is equal to the invocation time of the intercepted method,
as well as an associated call stack. At their corresponding call stacks, probe descriptions and

128

timings are cumulated and saved as payloads into the call tree. While events are consolidated
after a certain maximum number, the cumulated payloads in the call tree show the total numbers
for the entire recording period. If both CPU data and your probe are being recorded, the probe
call tree view will show the merged call stacks with the payload strings as leaf nodes and the
CPU call tree view will contain annotated links into the probe call tree view.

Probe Events Call tree with annotated payloads
Payload A, time 200 ms .. Method 1
Payload A, time 100 ms Payloads
Payload A, time 300 ms ': Payload A, count 3, time 600 ms
Payload B, time 100 ms Payload B, count 2, time 300 ms
Payload B, time 200 ms Method 2
: Method 3
chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot spots
show which payloads are responsible for most of the expended time and the back traces show
you which parts of your code are responsible for creating these payloads. In order to get a good
list of hot spots, the payload strings should not contain any unique IDs or timestamps, because
if every payload string is different, there will be no cumulation and no clear distribution of hot
spots. For example, in the case of a prepared JDBC statement, the parameters should not be
included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception handler
method annotated with Payl oadl nt er cept i on either as a string or as a Payl oad object for
advanced functionality. Embedded probes, on the other hand, create payloads by calling Payl oad.
exi t with the payload description as an argument, where the time between Payl oad. ent er
and Payl oad. exi t is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different call
sites. A typical example is a database driver where the payload string is some form of query
string or command. The probe takes the perspective of the call site, where the work that is
measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the intercepted method is called, but rather what method calls are executed after it. A typical
example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each distinct
string that is built by the probe. For each such string, a splitting node will be inserted into the
call tree that contains the cumulated call tree of all corresponding invocations. Where otherwise
there would be just one cumulated call tree, now there is a set of splitting nodes segmenting the
call tree into different parts that can be analyzed separately.

129

Call tree without splits Call tree with splits

Method 1, 1 inv., 1400 ms Method 1, 1 inv., 1400 ms
': Method 2, 4 inv., 900 ms
Method 3, 3 inv., 500 ms

Split string A |

— Method 2, 3 inv., 200 ms
L Method 3, 1inv., 400 ms

Split string B |

— Method 2, 1inv., 700 ms
— Method 3, 2 inv., 100 ms

Multiple probes can produce nested splits, a single probe by default produces only one split
level, unless is has been configured as reentrant which is not supported for script probes.

In the JProfiler UI, call tree splitting is not bundled with the script probe feature, but is a separate
feature [p. 159] called "Split methods". They just split the call tree without creating payloads, so
no probe view with name and description is required. Injected probes return the split string from
an interception handler method annotated with Spl i t | nt er cept i on, while embedded probes
call Spli t. ent er with the split string.

© Session Settings X

Define Fiters Exceptional methods Ignored methods Split methods
—

This list contains methods that should be splitinto multiple branches in the
Application '<: «call tree, similarly to request splitting of the serviet probe. A configurable
Settings scriptreturns a string that is displayed above the actual method node. For
example, you can split the call tree for different argument values

Y If this feature is abused, the call tree can become very large, adding significant
overhead.
Filter
Settings m bezier BezierAnim$Demo. createGraphics2D{int, int)
% Split by return value of script: PG EEREE (Sl)]
Profiing

Settings

Triggers
Settings

: |

Database
Settings

JEE &
Prabes

General Settings Cancel

Telemetries

Custom probes have two default telemetries: The event frequency and the average event duration.
Injected and embedded probes support additional telemetries that are created with annotated
methods in the probe configuration classes. In the JProfiler Ul, script telemetries are independent

130

from the script probe feature and are found in the "Telemetries" section, under the Configure
Telemetries button in the tool bar.

@ Configure Custom Telemetries x

El-DataBus connections [plain] lE‘

DataBus connections [Script line "DataBus.getinstance().getActiveCon

Add Telemetry View

Add MBean Telemetiy Line

I Add Script Telemetry Line I

Telemetry methods are polled once per second. Inthe Tel enet ry annotation, you can configure
the unit and a scale factor. With the | i ne attribute, multiple telemetries can be combined into
a single telemetry view. With the st acked attribute of the Tel enet r yFor mat you can make the
lines additive and show them as a stacked line graph. The telemetry-related APIs in the embedded
and injected probes are equivalent but only applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are called
"control objects" in JProfiler. For example, in a database probe, that role is taken by the physical
connection that executes a query. Such control objects can be opened and closed with the
embedded and the injected probe APIs which generates corresponding events in the probe
events view. When a probe event is created, the control object can be specified, so that the probe
event contributes to the statistics that is shown in the "Control objects" view of the probe.

€ factorial jps - JProfiler - m} X
Session View Profiling Window Help
i, i, -) C _— hx
. 1 N ~ M P 9
PG H E P BT SN | al.
Start Save Session Stam Stap Start Add Wiew Record Freeze Add To Show
Genter D¥ Sihor Settings | Recordings Recordings Tracking | 7" 9% Bockmark | E™ somings | P Probe View Tracker Events
Sl Profiling Wiewr specific
-
o JEE &Probes @ Time Line @ control Objects o Call Tree 3 Factorial cache e
= Records request to the factorial cache
Serviets
Show control Objects: | Both open and dosed Filter ~
JNDT
D Mame & End Time Event Count Event Duration
s 3 Factorial cache connection #1 0:00. 836 9,491 ms
5 Factorial cache connection #2 0:00. 788 9,014 ms
RML 1 Factorial cache connection #3 0:00. 782 9,181 ms
. X 2 Factorial cache connection #4 0:00. 798 9,351 ms
Web Services 4 Factorial cache connection #5 0:00. 796 9,796 ms
Class Loaders
Exceptions
Sockets
Files
Processes
Factorial server
Factorial cache
Fr
MBeans
u
" Total: 4,000 46,845 ms
+ @ 3recordings Jan 29, 2018 3:08:33 PM VM #1 | 00:15 | snapshot

131

Control objects have display names that have to be specified when they are opened. If a new
control object is used when creating a probe event, the probe has to provide a name resolver
in its configuration.

In addition, probes can define custom event types via an enum class. When the probe event is
created, one of those types can be specified and shows up in the events view where you can can
filter for single event types. More importantly, the time line view of the probe that shows control
objects as lines on a time axis is colored according to the event type. For a probe without custom
event types, the coloring shows the idle state where no events are recorded and the default
event state for the duration of probe events. With custom types, you can differentiate states, for
example "read" and "write".

@ factorial jps - JProfiler - m} X
Session View Profiling Window Help
= 1] i % -4 —_
6 H 2 2 8 & » 2 5|0 @
Start Save Seszion Stam Stop Statt Add Wiaw Record
Gerter ¥ Sopchor Setings | Recordings Recordings Tracking | ““"5C Bokmarc | FP Satings | TP Probe
Session Profiiing \
-
JEE & Probes G - : Factorial cache
Time Li Control Objects CallTr 3
o i Time Ling @ Control Objec & allres Records request to the factorial cache o
Servlets
Show control Objects: |Both open and dosed - Filter -
™ @ |7 EEEEEEREE EEEEEEREE! EEEREEER
Control Objects 0:10 0:20 0:30
Mz Factorial cache connection #1 [10 7] 151 1
RMI Factorial cache connection #2 [10 5] I 01 . ——
Factorial cache connection #5 [10 4] 1 INE | s
Web Services Factorial cache connection #4 [0 2] HE 11 e—
Class Loaders Factorial cache connection #3 [1D 1] 1T I B e —
Exceptions
Sockets
Files
Processes
Factorial server
Factorial cache
ey
MBeans
W = Idle == Read = rite 218
-1 @ 3recordings Jan 29, 2018 3:08:33PM VM #1 00:15 I.—-I Snapshot

Recording

Like for all probes, custom probes do not record data by default, but you have to enable and
disable recording as necessary. While you can use the manual start/stop action in the probe
view, it is often necessary to switch on probe recording at the beginning. Because JProfiler does
not know about custom probes in advance, the recording profiles have a Custom probes check
box that applies to all custom probes.

132

@ Configure Recording Profiles x

Configured recording profiles:

ﬁ CPU only

ﬁ CPU and Allocation Recording

x|+

5 My recording profile [

CPU data W Method statistics [l Call tracer

M ~llocation call sta: W Monitor recording [l Complexity data
Custom probes

Record database: [none] ﬂ

Record built-in probes: [none] :

Recording overhead: [

<[>

Cancel

0 Help

Similarly, you can choose All custom probes for the trigger actions that start and stop probe
recording.

@ Trigger Wizard - CPU load threshold X
1. Trigger type Configure actions for this trigger

2. Threshold

3. Actions Configured actions:

Desaiption J Start probe recording

5. Group ID

6. Finished S All custom probes

~
v

4 Back Next p Finish Cancel

For programmatic recording, you cancallControl | er. st art ProbeRecor di ng(Control | er.
PROBE_NAME_ALL_CUSTOM ProbeRecor di ngOpt i ons. EVENTS) to record all custom probes,
or pass the class name of the probe in order to be more specific.

133

A.2 Script Probes

Developing a custom probe in your IDE requires a clear understanding of the interception point
and the benefits that the probe will provide. With script probes, on the other hand, you can
quickly define simple probes directly in the JProfiler GUI and experiment without having to learn
any API. Unlike embedded or injected custom probes, script probes can be redefined during a
running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that returns
the payload string for the probe. Multiple such method-script pairs can be bundled in a single
probe.

The script probe configuration is accessed in the session settings. This is the place to create and
delete script probes as well as for saving your script probes to a set that can be imported by
other profiling sessions.

@ Session Settings X

Built-In Probes Seript Probes Custom Probes

Seript probes defined for the current session:
Application

Settings @ Image buffers
Measures the areas of image buffers.

T

Filter
Settings

@_':

Profiing
Settings

Triggers
Settings

E |

Database
Settings

@
2

JEE &
Probes

General Settings Cancel

Each script probe needs a name and optionally a description. The name is used to add a probe
view to JProfiler's view selector in the "JEE & Probes" section. The description is shown in the
header of the probe view and should be a short explanation of its purpose.

For selecting a method you have multiple options, including selecting a class from the configured
classpath or selecting a class from the profiled classes if the profiling session is already running.
In the second step, you can then select a method from the selected class.

134

@ Create Script Probe X

1. Name and description Specify the payload interceptions
2. Payload interceptions
PE— Intercepted methods:

- Call tree annotations m bezier.BezierAnim$Demo. createGraphics2D{int, int)
3. Finished

Payload creation script: [z SRR (B Search in Configured Class Path

Search in Other JAR or Class Files

Search in Profiled Classes

Enter Manually (Advanced)

Quick Help
Uze the current object (nu11 for static methods) as wel as the method parameters to construct
and return & payload string.

Probe events, probe call tree and probe hot spate will be shown for these payloads.

w Advanced Options

4 Back Next p Finish Cancel

A much easier way to select the intercepted method is from the call tree view. In the context
menu, the Intercept Method With Script Probe action will ask you if you want to create a new probe
or add an interception to an existing probe.

-

Thread selection: . All thread groups ~ | Aggregation level: @ Methods w
’i:l Live memory =
] Thread status: B Runnable ~ | View mode: = Tree w
El'u . 05,5% - 338 ms - 1inv. java.awt.EventDispatchThread.run
b Heap Walker E—J--@— 82.7% - 725 ms - 398 inv. bezier.BezierAnmsDemo. paint
M 51, 5% - 452 ms - 398 inv. bezier.BezierAnimSDemo.drawDemo
M 23.0% - 201 ms - 398 inv. java.awt.Graphics.drawImage
.
- 520 |
I el Show Call Graph
fint
Add Method Trigger
Call Tree 99 ateGraphics
@ Add As Exceptional Method dth
Hot Spots =< Split Method with a Seript ight
Call Graph] Intercept Method With Script Probe I
2= Merge splitting level Ctrl+Alt+ M
Metnod Statistics e !
Complexity Analysis 5: Remove Selected Sub-Tree Delete
Eg Restore Removed Sub-Trees Ctrl+Alt+S
Call Tr
& fracer T Add Filter From Selection >
JavaScript XHR —
@ Show Tree Legend
— = .
Threads _ Show Mode Details Chrl+Alt+]
e = Show Source F4
i Show Bytecode
n Manitare & lncke Call Tree] g v @
- -

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well as the
object on which the method was called. If you need access to the return value of the intercepted
method or any thrown exceptions, you have to write an embedded or injected probe.

In this environment, your script can construct the payload string, either as an expression or as
a sequence of statements with a return statement. The simplest version of such a script simply
returns par anet er.toStri ng() for one parameter or Stri ng. val uet (par anet er) for a
parameter with a primitive type. If it returns nul | , no payload will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section will
show links into the probe view at the appropriate call stacks. Alternatively, you can select to show
the payload strings inline in the CPU call tree view. The "Payload interceptions->Call tree
annotations" step of the probe wizard contains this option.

135

@ Edit x
Settings Edit Search Code Help

Sco|2 YR E *
Help

»® &

Show Find Replace

Unda Redo Copy cut Paste Fistary

Test
Corpile

Please enter an expression {no trailing semicolan) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

E”N'Ill

- com.jprofiler.api.agent. SoriptContext scriptContext
- java.lang.Class <Object> ¢
- bezier BezierAnim.Demo currentObject
-int il
-int i2
The expected return type is java.lang.String
Saript:
J.I'F1xe].s: " 4+ (i1 * i2)]

Conce

One more parameter that is available to the script is the script context, an object of type com
jprofiler.api.agent. ScriptContext thatallows you to store data between invocations of
any script that is defined for the current probe. For example, let's suppose that the intercepted
method A only sees objects that have no good text representation, but the association between
object and display name could be obtained by intercepting method B. Then you could intercept
method B in the same probe and save the object-to-text association directly to the script context.
In method A you would then get that display text from the script context and use it to build the
payload string.

Method A, intercepts: ‘

- object ¢
@ . name E .. :

scriptContext.putObject(c,n);
return null;

Timed method B, intercepts:

@ - object c

return|scriptContext.getObject(c); [« E

136

If these kinds of concerns get too complex, you should consider switching to the embedded or
injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but they
are missing a couple of capabilities from the full probe system that you should be aware of:

+ Script probes cannot do call tree splitting. In the JProfiler Ul this is a separate feature as
explained in the custom probes concepts [p. 128] . Embedded and injected probes offer call
tree splitting functionality directly.

+ Script probes cannot create control objects or create custom probe event types. This is only
possible with embedded or injected probes.

+ Script probes cannot access return values or thrown exceptions, unlike embedded and injected
probes.

+ Script probes cannot handle reentrant interceptions. If a method is called recursively, only
the first call into it is intercepted. Embedded and injected probes offer you fine-grained control
over reentrant behavior.

+ Itis not possible to bundle telemetries other than default telemetries into the probe view.
Instead, you can use the script telemetry feature as shown in the custom probes concepts.
[p. 128]

137

A.3 Injected Probes

Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside of the JProfiler GUI in your IDE and rely on the
injected probe API that is provided by JProfiler. The APl is licensed under the permissive Apache
License, version 2.0, making it easy distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api / sanpl es/
si npl e-i nj ect ed- pr obe directory of your JProfiler installation. Execute . . / gr adl ewin that
directory to compile and runiit. The gradle build file bui | d. gr adl e contains further information
about the sample. The example in api / sanpl es/ advanced- i nj ect ed- pr obe shows more
features of the probe system, including control objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single artifact
with maven coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 10.1.5.

Jar, source and javadoc artifacts are published to the repository at

https:// maven. ej -t echnol ogi es. conl repository

You can either add the probe API to your development class path with a build tool like Gradle
or Maven, or use the JAR file

api /jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api / j avadoc/ i ndex. ht m

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview for
thecom jprofiler.api.probe.injectedpackageis agood starting point for exploring the
API.

Probe structure

An injected probe is a class annotated with com j profil er. api . probe. i nj ect ed. Probe.
The attributes of that annotation expose configuration options for the entire probe. For example,
if you create a lot of probe events that are not interesting for individual inspection, the event s
attribute allows you to disable the probe events view and reduce overhead.

@r obe(nane = "Foo", description = "Shows foo server requests", events = "fal se")
public cl ass FooProbe {
}

138

To the probe class, you add specially annotated static methods in order to define interception
handlers. The Payl oadl nterception annotation creates payloads while the
Splitlnterception annotation splits the call tree. The return value of the handler is used as
the payload or the split string, depending on the annotation. Like for script probes, if you return
nul I, the interception has no effect. Timing information is automatically calculated for the
intercepted method.

@°r obe(nane = "FooBar")
public cl ass FooProbe {
@rayl oadl nt er cepti on(
i nvokeOn = | nvocationType. ENTER,
met hod = @t hodSpec(cl assNane = "com bar. Dat abase",
met hodName = "processQuery",
par anet er Types = {"com bar. Query"},
returnType = "void"))
public static String fooRequest (@Paraneter(0) Query query) {
return query. get Verbose();
}

@plitlnterception(
met hod = @t hodSpec(cl assNane = "com f 0oo. Server",
net hodNane = "handl eRequest ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static String barQuery(@araneter(0) Request request) ({
return request.getPath();
}

As you can see in the above example, both annotations have a net hod attribute for defining the
intercepted methods with a Met hodSpec. In contrast to script probes, the Met hodSpec can have
an empty class name, so all methods with a particular signature are intercepted, regardless of
the class name. Alternatively, you can use the subt ypes attribute of the Met hodSpec to intercept
entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler methods
declare parameters to request values of interest. Each parameter is annotated with an annotation
fromthecom jprofiler.api.probe.injected. paraneter package, so the profiling agent
knows which object or primitive value has to be passed to the method. For example, annotating
a parameter of the handler method with @Par anet er (0) injects the first parameter of the
intercepted method.

Method parameters of the intercepted method are available for all interception types. Payload
interceptions can access the return value with @Ret ur nVal ue or a thrown exception with
@xcepti onVal ue if you tell the profiling agent to intercept the exit rather than the entry of
the method. This is done with the i nvokeOn attribute of the Payl oadl nt er cept i on annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations of
the intercepted method if you set the r eent r ant attribute of the interception annotation to
t rue. With a parameter of type Pr obeCont ext in your handler method, you can control the
probes's behavior for nested invocations by calling Pr obeCont ext . get Qut er Payl oad() or
ProbeCont ext.restartTi m ng().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for building
the probe string. For that purpose, your probe can contain an arbitrary number of interception
handlers annotated with | nt er cept i on that do not create payloads or splits. Information can
be stored in static fields of your probe class. For thread safety in a multi-threaded environment,

139

you should use ThreadLocal instances for storing reference types and the atomic numeric
types from the j ava. uti |l . concurrent. at om c package for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method exit. A
common case is if you maintain state variables like i nMet hodCal | that modify the behavior of
another interception. You can seti nMet hodCal | totrue in the entry interception, which is the
default interception type. Now you define another static method directly below that interception
and annotate it with @\ddi ti onal I nterception(i nvokeOn = | nvocationType. EXIT).
The intercepted method is taken from the interception handler above, so you do not have to
specify it again. In the method body, you can set your i nMet hodCal | variable to f al se.

private static final ThreadLocal <Bool ean> i nMet hodCal |l =
ThreadLocal .withlnitial (() -> Bool ean. FALSE) ;

@ nterception(
i nvokeOn = | nvocati onType. ENTER,
met hod = @kt hodSpec(cl assNane = "com f oo. Server",
nmet hodNane = "internal Cal | ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static void guardEnter() {
i nMet hodCal | . set (Bool ean. TRUE) ;
}

@\ddi tional I nterception(lnvocationType. EXIT)
public static void guardExit() {

i nMet hodCal | . set (Bool ean. FALSE) ;
}

@plitlnterception(
nmet hod = @kt hodSpec(cl assNane = "com f oo. Server",
met hodNanme = "handl eRequest ",
par anmet er Types = {"com f 00. Request"},
returnType = "void"),
reentrant = true)
public static String splitRequest(@araneter(0) Request request) {
if (linMethodCall.get()) {
return request.getPath();
} else {
return null;

}

You can see a working example of this use case in api / sanpl es/ advanced- i nj ect ed- pr obe/
src/ mai n/ j ava/ AdvancedAw Event Pr obe. j ava.

Control objects

The control objects view is not visible unless the cont rol Cbj ect s attribute of the Probe
annotation is set to t r ue. For working with control objects you have to obtain a Pr obeCont ext
by declaring a parameter of that type in your handler method. The sample code below shows
how to open a control object and associate it with a probe event.

140

@°r obe(nane = "Foo", control Cbjects = true, custoniTypes = M/Event Types. cl ass)
public class FooProbe {
@nterception(
i nvokeOn = | nvocationType. EXI T,
nmet hod = @kt hodSpec(cl assNane = "com f oo. Connect i onPool ",
nmet hodNane = "creat eConnecti on",
par anet er Types = {},
returnType = "com foo. Connection"))
public static void openConnecti on(ProbeContext pc, @ReturnVal ue Connection c) {
pc. openCont rol Obj ect (c, c.getld());

}

@pPay| oadl nt er cepti on(
i nvokeOn = | nvocationType. EXI T,

met hod = @t hodSpec(cl assNanme = "com f oo. Connect i onPool ",
net hodName = "creat eConnecti on",
par anet er Types = {"com foo. Query", "com foo. Connection"},
returnType = "com f 0oo. Connecti on"))

public static Payl oad handl eQuery(
Pr obeCont ext pc, @araneter(0) Query query, @Paranmeter (1) Connection c) {
return pc.createPayl oad(query. get Verbose(), ¢, M/Event Types. QUERY);

Control objects have a defined lifetime and the probe view records their open and close times
in the timeline and the control objects view. If possible, you should open and close control objects
explicity by calling ProbeContext.openControl Gbject() and ProbeContext.
cl oseCont rol Obj ect (). Otherwise you have to declare a static method annotated with
@ont r ol bj ect Nare that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns instances
of Payl oad instead of St ri ng. The Pr obeCont ext . cr eat ePayl oad() method takes a control
object and a probe event type. The enum with the allowed event types has to be registered with
the cust onilypes attribute of the Pr obe annotation.

Control objects have to be specified at the start of the time measurement which corresponds
to the method entry. In some cases, the name of payload string will only be available at method
exit, because it depends on the return value or other interceptions. In that case, you can use
Pr obeCont ext . cr eat ePayl oadW t hDef err edNanme() to create a payload object without a
name. Define an interception handler annotated with @\ddi t i onal | nt er cept i on(i nvokeOn
= I nvocationType. EXI T) right below and return a Stri ng from that method, it will then
automatically be used as the payload string.

Overriding the thread state

When measuring execution times for database drivers or native connectors to external resources,
it sometimes becomes necessary to tell JProfiler to put some methods into a different thread
state. For example, it is useful to have database calls in the "Net I/0" thread state. If the
communication mechanism does not use the standard Java I/0 facilities, but some native
mechanism, this will not automatically be the case.

With a pair of ThreadSt at e. NETI O. enter () and ThreadSt at e. exi t () calls, the profiling
agent adjusts the thread state accordingly.

141

@nterception(invokeOn = | nvocationType. ENTER, nethod = ...)
public static void enterMethod(ProbeContext probeContext, @hisValue JConponent
conmponent) {
Thr eadSt at e. NETI O. enter () ;
}

@\ddi tional I nterception(lnvocationType. EXI T)
public static void exitMthod() {
ThreadState. exit();

}

Deployment

There are two ways to deploy injected probes, depending on whether you want to put them on
the classpath or not. With the VM parameter

-Djprofiler.probed assPat h=. ..

a separate probe class path is set up by the profiling agent. The probe classpath can contain
directories and class files, separated with ;' on Windows and "' on other platforms. The profiling
agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM parameter

-D profiler.custonProbes=...

to a comma-separated list of fully qualified class names. For each of these class names, the
profiling agent will try to load an injected probe.

142

A.4 Embedded Probes

If you control the source code of the software component that is the target of your probe, you
should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects as method parameters for the handler method. With
embedded probes, this is not necessary, because you can call the embedded probe API directly
from the monitored methods. Another advantage of embedded probes is that deployment is
automatic. Probes ship together with your software and appear in the JProfiler Ul when the
application is profiled. The only dependency you have to ship is a small JAR file licensed under
the Apache 2.0 License that mainly consists of empty method bodies serving as hooks for the
profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that the
artifact name is j profi |l er - pr obe- enbedded instead of j profi | er - probe-inj ect ed and
that you ship the JAR file with your application instead of developing the probe in a separate
project. The probe APl that you need for adding an embedded probe to your software component
is contained in the single JAR artifact. In the javadoc, start with the package overview for com
jprofiler.api.probe. enbedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api /
sanpl es/ si npl e- enbedded- pr obe, there is an example that gets you started with writing an
embedded probe. Execute . ./ gradl ewin that directory to compile and run it and study the
gradle build file bui | d. gr adl e to understand the execution environment. For more features,
including control objects, go to the example in api / sanpl es/ advanced- enbedded- pr obe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The probe
classmustextendcom j profil er. api . probe. enbedded. Payl oadPr obe orcom j profiler.
api . probe. enrbedded. Spli t Pr obe, depending on whether your probe collects payloads or
splits the call tree. With the injected probe API, you use different annotations on the handler
methods for payload collection and splitting. The embedded probe API, on the other hand, has
no handler methods and needs to shift this configuration to the probe class itself.

public class FooPayl oadProbe extends Payl oadProbe {
@verride
public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

Whereas injected probes use annotations for configuration, you configure embedded probes
by overriding methods from the base class of the probe. For a payload probe, the only abstract
method is get Nane(), all other methods have a default implementation that you can override
if required. For example, if you want to disable the events view to reduce overhead, you can
override i sEvent s() toreturnfal se.

For collecting payloads and measuring their associated timing you use a pair of Pay| oad. ent er ()
and Payl oad. exi t () calls

143

public void neasuredCall (String query) {
Payl oad. ent er (FooPay| oadPr obe. cl ass) ;

try {
per f or mor k() ;

} finally {
Payl oad. exi t (query);
}

The Payl oad. ent er () call receives the probe class as an argument, so the profiling agent knows
which probe is the target of the call, the Payl oad. exi t () call is automatically associated with
the same probe and receives the payload string as an argument. If you miss an exit call, the call
tree would be broken, so this should always be done in a finally clause of a try block.

If the measured code block does not produce any value, you can call the Payl oad. execut e
method instead which takes the payload string and a Runnabl e. With Java 8+, lambdas or method
references make this method invocation very concise.

public void nmeasuredCal | (String query) {
Payl oad. execut e(FooPayl oadPr obe. cl ass, query, this::performrk);

}

The payload string must be known in advance in that case. There is also a version of execut e
that takes a Cal | abl e.

public QueryResult neasuredCall (String query) throws Exception {
return Payl oad. execut e(Payl oadPr obe. cl ass, query, () -> query.execute());
}

The problem with the signatures that take a Cal | abl e is that Cal | abl e. cal | () throws a
checked Excepti on and so you have to either catch it or declare it on the containing method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods in the
Payl oad class. They are associated with probe events by passing them to a version of the
Payl oad. ent er () or Payl oad. execut e() methods that take a control object and a custom
event type.

public void nmeasuredCal | (String query, Connection connection) {
Payl oad. ent er (FooPayl oadPr obe. cl ass, connection, M/Event Types. QUERY);

try {
per f or MAbr k() ;

} finally {
Payl oad. exi t (query);
}

The control object view must be explicitly enabled in the probe configuration and custom event
types must be registered in the probe class as well.

144

public class FooPayl oadProbe extends Payl oadProbe {

@verride

public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

@verride
publ i c bool ean isControl Gbjects() {
return true;

}

@verride
public C ass<? extends Enune get Custoniypes() {
return Connecti on. cl ass;

}

If you do not explicitly open and close your control objects, the probe class must override
get Cont r ol Obj ect Nane in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split the call
tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
i sReentrant () toreturntrue. Split probes can also create a probe view and publish the split
strings as payloads if you override i sPayl oads() to returntrue in the probe class.

To perform a split, make a pair of callsto Split.enter() andSplit.exit().

public void splitMethod(String paraneter) {
Split.enter(FooSplitProbe.class, paraneter);

try {
per f or Mor k(par aneter);

} finally {
Split.exit();
}

Contrary to to payload collection, the split string has to be passedtothe Spl i t . ent er () method
together with the probe class. Again, it is important that Spli t. exi t () is called reliably, so it
should be in afinally clause of a try block. Spl i t also offers execut e() methods with Runnabl e
and Cal | abl e arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being in the
same classpath you can directly access all static methods in your application. Just like for injected
probes, annotate static public methods in your probe configuration class with @'el enetry and

145

return a numeric value. See the chapter on probe concepts [p. 128] for more information. The
@el enet ry annotations of the embedded and the injected probe APIs are equivalent, they are
just in different packages.

Another parallel functionality between embedded and injected probe APl is the ability to modify
the thread state with the Thr eadSt at e class. Again, the class is present in both APIs with different
packages.

Deployment

There are no special steps necessary to enable embedded probes when profiling with the JProfiler
Ul. However, the probe will only be registered when the first call into Payl oad or Spl i t is made.
Only at that point will the associated probe view be created in JProfiler. If you prefer the probe
view to be visible from the beginning, as is the case for built-in and injected probes, you can call

Payl oadPr obe. r egi st er (FooPayl oadPr obe. cl ass) ;
for payload probes and
Spl i t Probe. regi ster(FooSplitProbe.cl ass);

for split probes.

You may be considering whether to call the methods of Payl oad and Spl i t conditionally, maybe
controlled by a command line switch in order to minimize overhead. However, this is generally
not necessary, because the method bodies are empty. Without the profiling agent attached, no
overhead is incurred apart from the construction of the payload string. Considering that probe
events should not be generated on a microscopic scale, they will be created relatively rarely, so
that building the payload string should be a comparatively insignificant effort.

Another concern for containers may be that you do not want to expose external dependencies
on the class path. A user of your container could also use the embedded probe APl which would
lead to a conflict. In that case you can shade the embedded probe API into your own package.
JProfiler will still recognize the shaded package and instrument the API classes correctly. If
build-time shading is not practical, you can extract the source archive and make the classes part
of your project.

146

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods

If the method call recording type is set to instrumentation, all methods of profiled classes are
instrumented. This creates significant overhead for methods that have very short execution
times. If such methods are called very frequently, the measured time of those method will be
far to high. Also, due to the instrumentation, the hot spot compiler might be prevented from
optimizing them. In extreme cases, such methods become the dominant hot spots although this
is not true for an uninstrumented run. An example is the method of an XML parser that reads
the next character. Such a method returns very quickly, but may be invoked millions of times in
a short time span.

This problem is not present when the method call recording type is set to sampling. However,
sampling does not provide invocations counts, only shows longer method calls and several views
do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called auto-tuning.
From time to time, the profiling agent checks for methods with high instrumentation overhead
and transmits them to the JProfiler GUI. In the status bar, an entry alerting to the presence of
overhead hot spots will be shown.

Complexity Analysis
Call Tracer

JavaScript XHR

Threads

@ 1 active recording ¢ Auto-update 5s WM #1

You can click on that status bar entry to review the detected overhead hot spots and choose to
accept them into the list of ignored methods. These ignored methods will then not be
instrumented. When a session is terminated, the same dialog is shown.

@ Overhead Hot Spots Detected *

Some methods with excessive instrumentation overhead have been detected. They are called very
frequently, their execution times are very short, and the time reguired for measuring those calls is
disproportional.

Since they distort the overall picture, JProfiler recommends that you add these methods to the list of
ignored methods.

‘fou can edit the list of ignored methods in the filter settings section of the session settings.

@ java.applet.Applet.getGraphics() ,\(
(D) java.awt. Graphics2D.dearRect{int, int, int, int)

(@ java.awt.EventQueue.invokeLater(java.lang Runnable)

@ javax.swing,JCompenent. _paintimmediately(int, int, int, int)

(D) javax.swing.Repaintivanager.addDirtyRegion0(java.awt. Container, int, int, int, int)

@ javax.swing.RepaintManager.paintDirtyRegions(java.util.Map)

@ javax.swing.RepaintManager, collectDirtyCompenents(java.util, Map, java.awt. Component, java.util List)

(D) javax.swing.Repaintvanager sPaintManager. paintDoubleBuffered({javax.swing. JComponent, java.awt.I...

[[] pisable auto-tuning

0 Help Cancel

After you apply the new profiling settings, all ignored methods will be missing in the call tree.
Their execution time will be added to the self time of the calling method. If later on you find that

147

some ignored methods are indispensable in the profiling views, you can remove them in the
Ignored Methods tab in the session settings.

@ Session Settings X
Define Filters Exceptional methods Ignored methods — spiit methods
—
This list contains methods that should be completely ignored by JProfiler. The main use cases are call
Application site i of dynamic and overhead hot spots that create excessive
Settings averhead for dynamic instrumentation.
During profiing overhead hot spats are indicated in the status bar and at the end of a session you are
T prompted whether to accept them as ignored methods. If you would like to deactivate this feature,
please dear the list, edit the profiing settings and disable auto-tuning on the "CPU Profiing” tab.
Filter
Settings Ignored methods are only relevant if the methed call recording type is set to Instrumentation.
& (@) org.codehaus.groovy.runtime. callsite, Callsite. +
@' @ java.applet. Applet. getGraphics{) x
Profiing (D) java.awt.Graphics2D. dearRect{int, int, int, int)
Settings (@ java.awt.EventQueue.invokeLater (java.lang. Runnable) O
@ javax.swing, JComponent._paintimmediately{int, int, int, int)
(D) javax.swing.RepaintManager. addDirtyRegiond(java.awt. Container, int, int, int, int)
Triggers (@) javax.swing.RepaintManager. paintDirtyRegions(java. utl. Map)
Settings @ javax.swing,RepaintManager, collectDirtyComponents(java.util.Map, java.awt.Component, java.u...
(D) javax.swing.RepaintManager $PaintManager. paintDoubleBuffered (javax. swing. Jomponent, java....
Database
Settings
JEE &
Probes D
7
General Settings Cancel

The default configuration for ignored methods includes the call site classes for Groovy that are
used for the dynamic method dispatch, but make it difficult to follow the actual call chain.

If you want to manually add ignored methods, you can do so in the session settings, but a much
easier way is to select a method in the call tree and invoke the Ignore Method action from the
context menu.

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~
’ Telemetries
Thread status: == Runnable ~ | View mode: = Tree ~
(-1 04, 4% - 386 ms - 1inv. java.awt.EventDispatchThread.run
,’:’. Live memory [ERm 5.5 - 52,589 ps - 1inv. bezier.Bezier AniméDemo. rug
()1 2.9% - 27,601 ps - 387 inv. bezier.BezierAnimsDe =5 Show Call Graph
-- ()1 2,1% - 19,596 ps - 387 inv, bezier,BezierAnimsDe)
b Heap Walker +-g) 0.2% - 1,562 ps - 387 inv. java.lang. Thread. sleey Add Method Trigger
() 0.0% - 183 s - 387 inv. bezier.BezierAnimsDemo| () Add As Exceptional Method
=< Split Method with a Script
I EIuETE [-] Intercept Method With Script Probe
2=+ Merge splitting level Ctrl+Alt+
Call Tree
Hot Spots 52 Remove Selected Sub-Tree Delete
g2 Restore Removed Sub-Trees Ctrl+Alt+S
ECa Compact bezier BezierAnim$Demo P Add Filter From Selection
Method Statistics Compact bezier. —
©@ Show Tree Legend
@ lgnore bezier.BezierAnim$Demo N :
Complexity Analysis o Show Node Details Ctrl+Alt+|
@ Ignore bezier. — =
ow Source
TR E Ignere methed bezier.BezierAnim$Demo.run()
¢ Show Bytecode
JavaScript XHR
'ﬁ' Expand Multiple Levels
—
Threads Call Tree View Filters .;:‘. Collapse All

=

In the filter settings, you can also ignore entire classes or packages by setting the type of the
filter entry to "Ignored". The Add Filter From Selection menu contains actions that depend on the
selected node and suggest ignoring the class or packages up to the top-level package. Depending
on whether the selected node is compact-profiled or profiled, you also see actions for changing
the filter to the opposite type.

148

In case you don't want to see any messages about auto-tuning, you can disable it in the profiling
settings. Also, you can configure the criteria for determining an overhead hot spot. A method is
considered an overhead hot spot if both of the following conditions are met:

« The total time of all its invocations exceeds a threshold in per mille of the entire total time in
the thread

* Its average time is lower than an absolute threshold in microseconds

@ Profiling Settings

Methed Call Recording

Probes & JEE Memory Profiing Thread Profiing Miscellaneous

Auto-Tuning For Instrumentation
Enable auto-tuning)

A method is an overhead hot spot and will be suggested for indusion into the list of ignored methods, if both of the
following conditions are true:

1, The total time of the method is more than 1045 per mille of the entire total time

2. The average time of the method is less than 100 5 ps

Auto-tuning is only performed if the method call recording type is set to "Instrumentation” on the "Method call recording™ tab.

Time Settings
CPU time measurement: (@) Elapsed time (7]
() Estimated CPU time)
Exceptional Method Run Recording
Maximum number of separately recorded method runs: 5H 0

Time type for determining exceptional method runs: Em Allstates -

Call Tree Splitting

Maximum number of splits: 128 @

General Settings

cancel

149

B.2 Request Tracking

Asynchronous execution of tasks is a common practice, both in plain Java code and even more
so with reactive frameworks. Code that is adjacent in your source file is now executed on two
or more different threads. For debugging and profiling, these thread changes presents two
problems: On the one hand, it is not clear how expensive an invoked operation is. On the other
hand, an expensive operation cannot be traced to the code that caused its execution.

JProfiler's solution to this problem is request tracking: Call sites and execution sites in
multi-threaded programming are hyperlinked in the call tree [p. 46] , so you can seamlessly
navigate both ways.

Request Tracking Types

Inter-thread communication can be implemented in various ways and the semantics of starting
tasks on a separate thread cannot be detected in a generic way. JProfiler explicitly supports
several common asynchronous systems. You can enable or disable them in the request tracking
settings. By default, request tracking is not enabled.

@ Request Tracking Settings X

Available request tracking modes:
[Executors i@
i

The call site is last profiled method before a deferred action is posted to the AWT event queue
with EventQueue . invokeLater (...} or simlar. The execution site is always in the
event dispatch thread,

[IswT @

[] Thread start [
COrMr @
[Jremote EXB |
[] web Services |3

Request tracking connects call sites with execution sites in multi-threaded programming.

Methods that are call sites are marked in the call tree and sllocation tree views. From a call site, you can
jump to all associated execution sites.

Execution sites are shown as separate nodes. From an execution site, you can jump back to the associated
call site.

€ Hep Cancel

In JProfiler's main window, the status bar indicates if some request tracking types are enabled
and gives you a shortcut to the request tracking dialog.

wan 1aue

JavaScript XHR

Threads

Request tracking is active, Click to toggle or press [Ctrl+F8] |

AT

n Mnnitnrs & Incks Call Tre|
-

@ 1 active recording D Auto-update 5 WM #1

The simplest way to offload a task on another thread is to start a new thread. With JProfiler, you
can follow a thread from its creation to the execution site by activating the "Thread start" request
tracking type. However, threads are heavy-weight objects and are usually reused for repeated
invocations, so this request tracking type is more useful for debugging purposes.

The mostimportant and generic way to start tasks on other threads uses executors in thej ava.
util.concurrent package. Executors are also the basis for many higher-level third party
libraries that deal with asynchronous execution. By supporting executors, JProfiler supports a
whole class of libraries that deal with multi-threaded and parallel programming.

150

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM: AWT
and SWT. Both toolkits are single-threaded, which means that there is one special event dispatch
thread that can manipulate GUI widgets and perform drawing operations. In order not to block
the GUI, long-running tasks have to be performed on background threads. However, background
threads often need to update the GUI to indicate progress or completion. This is done with special
methods that schedule a Runnabl e to be executed on the event dispatch thread.

In GUI programming, you often have to follow multiple thread changes in order to connect cause
and effect: The user initiates an action on the event dispatch thread, which in turn starts a
background operation via an executor. After completion, that executor pushes an operation to
the event dispatch thread. If that last operation creates a performance problem, it's two thread
changes away from the originating event.

Call Sites

A call site in JProfiler is the last profiled method call before a recorded thread change is performed.
It starts a task at an execution site that is located on a different thread or in a different VM. If
request tracking is enabled for the appropriate request tracking type, JProfiler allows you to jump
from a call site to an execution site by using hyperlinks that are shown in the call tree view.

Thread selection: & All thread groups ~ | Aggregation level: @ Methods w

Thread status: == Runnable ~ | View mode: = Tree w

- 1) I 53, 7% - §92 ms - 1inv. java.awt.EventDispatchThread.run

=) 6.3% - 59,661 ps - Linv, bezier,BezierAnim&Dema.run
+ %I 3.7% - 35,119 |.|s 398 inv, bezier. BemerAn\mSDemo sdﬁedulaBIodﬂngAcquy'
o - i M -

a. Z‘V 1,674 ps - 338 inv. java.lang. Thread.sleep
0.0% - 371 ps - 398 inv. bezier BezierAnim$Demo. block

Call Tree View Filters v | @

Call sites have the same identity with respect to request tracking for all threads. This means that
when you jump from call sites to execution sites and vice versa, there is no thread-resolution
and the jump always activates the "All thread groups" as well as the "All thread states" thread
status selection, so that the target is guaranteed to be part of the displayed tree.

Call sites and execution sites are in a 1:n relationship. A call site can start tasks on several
execution sites, especially if they are in multiple remote VMs. In the same VM, multiple execution
sites for a single call site are uncommon, because they would have to occur at different call
stacks. If a call site calls more than one execution site, you can choose one of them in a dialog.

Execution Sites

An execution site is a synthetic node in the call tree that contains all executions that were started
by one particular call site. The hyperlink in the execution site node takes you back to that call
site.

151

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: 0 All states ~ | View mode: = Tree ~

[~ . 50.0% - 9,749 ms - 1inv. bezier BezierAnimsDemo. run
-1 W 50.0% - 3,744 ms - 1inv. java.awt.EventDispatchThread.run
=R} 15.6% - 3,619 ms - 822 inv. called from bezier.BezierAnims
=R @ W 15,6% - 3,044 ms - 822 inv. bezier BezierAnim$Demo, paint
1 8.3% - 1,615 ms - 822 inv. bezier,BezierAnim$Demo.step
. 14.7% - 906 ms - 822 inv. bezier.BezierAnimsDemo. drawDemo
12.2% - 419 ms - 322 inv. java.awt.Graphics.drawImage
0.5% - 97,341 ps - 822 inv. bezier. BezierAniméDemo.createGraphics 2D
0.0% - 617 ps - 822 inv, java.awt.Graphics 2D, dispose
1% - 13,055 ps - 822 inv. called from bezier, Bezier Anim$Demo.scheduleBlockingActivity {call site #1)

Call Tree View Filters ~ | @

In principle, call sites and execution sites could be implemented in an n:m relationship. However,
it is often important to separately analyze the execution site depending on the call site. For
example, the same executor thread can handle tasks submitted from different methods, but
they will probably be of a different nature and so merging them would not be beneficial. That's
why JProfiler creates a new execution site for every call site.

If the same call site invokes the same execution site repeatedly, the execution site will show the
merged call tree of all its invocations. If that is not desired, you can use the exceptional methods
[p. 168] feature to split the call tree further, as shown in the screen shot below.

Thread selection: | §i§ All thread groups ~ | Aggregation level: | () Methods v

Thread status: X0 All states ~ | View mode: = Tree ~

El-m_ 50.2% - 7,003 ms - 1inv, java.awt.EventDispatchThread.run
W 12,0% -
H

LBl . java.awt. 3 dispatch [ex]
=% 1.5%-202ms - Linv. called from bezier.Bezier Anim&Demo.scheduleR epaint {call site £2)
E}"@ 1.4% - 202 ms - 1inv. bezier. BezierAnim$Demo.paint
8 1.4% - 199 ms - 1inv. bezier.BezierAnim$Demo.step

0.0% - 1,587 ps - 1inv. bezier.BezierAnimsDemo . drawDemo
0.0% - 828 ps - 1inv. java.awt.Graphics2D. fil
0.0% - 745 ps - 1inv. java.awt.Graphics2D. draw
0.0% - 3 ps - 2inv. java.awt. Graphics2D.setPaint
0.0% - 2 ps - 1inv, java.awt.geom.GeneralPath, <init>
0.0% - 2 ps - 6 inv. java.awt.geom.GeneralPath. curveTo
i 0.0% - 1ps - 1linv, java.awt.Graphics2D,setStroke
0.0% - 1ps - 1inv. java.awt.geom.GeneralPath. closePath
= 0.0% - 598 ps - 1inv. java.awt.Graphics.drawImage
(- 0.0% - 120 ps - 1inv. bezier.BezierAnim$Demo. createGraphics 2D
0,0% - 1ps - Linv, java.awt.Graphics2D, dispose
¥ 1.5% - 202 ms - 1inv. java.awt.event. InvocationEvent. dispatch
1.5% - 202 ms - 1inv. java.awt.event. InvocationEvent.dispatch
.5% - 202 ms - 1inv. java.awt.event. InvocationEvent. dispatch
3 1,58 - 202 ms - 1inv. java.awt.event InvocationEvent. dispatch [
@— 49.8% - 6,957 ms - Linv, bezier.BezierAnimSDemo.run

-
G- B

Call Tree View Filters v | @

Because several execution sites can refer to the same call site, call sites have a numeric ID. In
that way you can recognize the same call site if you see it referenced from different execution
sites. Execution sites are only referenced from a single call site and so they do not need a separate
ID.

Tracking across Multiple VMs

For selected communication protocols, JProfiler is able to insert meta-data and track requests
across JVM boundaries. The supported technologies are:

* RMI

152

+ Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
+ Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open them
at the same time in separate JProfiler top-level windows. This works with both live sessions as
well as with snapshots. If the target JVM is not currently open, or if CPU recording was not active
at the time of the remote call, clicking on a call site hyperlink will show an error message.

In addition, a call site with a remote execution site will display the ID of the remote VM in addition
to the call site ID. The ID of the profiled VM can be seen in the status bar. It is not the unique ID
that JProfiler manages internally, but a display ID that starts at one and is incremented for each
new profiled VM that is opened in JProfiler.

Call Tree View Filters v | @
i @ 1 active recording €D Auto-update 5s 00:15 & Profiing

153

B.3 Viewing Parts Of The Call Tree

Call trees often contain too much information. When you want to reduce the displayed detail,
there are several possibilities: you can restrict the displayed data to one particular sub-tree,
remove all unwanted data, or use a more coarse-grained filter for displaying method calls. All
of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each sub-tree can
be analyzed separately. Once you have found the entry point to such a sub-task, the surrounding
call tree is only a distraction and the timing percentages in the sub-tree inconveniently refer to
the root of the entire call tree.

To focus on a particular sub-tree, JProfiler offers the Set As Root context action in the call tree
and the allocation call tree views.

Thread selection: | §i§ All thread groups ~ | Aggregation level: | () Methods w
Thread status: |88 Runnable ~ | View mode: = Tree w
El--ﬁ— 100.0% - 2,937 ms - 1inv. CompileTest.main ~
=8 @— 93.5% - 2,746 ms - 1inv. com.sun. tools.javac. api. JavacTaskImpl. cal
=] @ N 3, 5% - 2,746 ms - 1inv, com.sun.tools.javac.api.JavacTaskImpl.doCall
9--@— 93.5% - 2,746 ms - 1inv. com.sun. tools.javac.main. Main.compile
E|®— 78.6% - 2,307 ms - Linv. com.sun. tools.javac.main.JavaCompiler. compile
- () W 41.6% - 1,220 ms - Linv. com.sun. tools.javac.main. JavaCompiler. compile 2
-
b =2 Show Call Graph BN
B -
| Add Method Trigger kEmpty
E (@ Add As Exceptional Method
o)
& Split Method with a Seript seFiles
"YW @ Intercept Method With Script Probe [itProcessAnnotations
@D+ Merge splitting level Ctrl+ Alt+M lssAnnotations
- ingEnvironment.close
5= Remowe Selected Sub-Tree Delete Error
. E; Restore Removed Sub-Trees Ctrl+Alt+5
"8 Y Add Filter From Selection
P @ ShowTree Legend
E-@® o Show Node Details Ctrl+Alt+] ce
B o
@=-() ol = Show Source F4
E 0 Show Bytecode Fr
H-QQ 0
-G O
Eg 0 ‘{' Expand Multiple Levels
E-Q) 0 4%+ Collapse All
o
TR @ setasRoot Ctrl+ Alt+R |
o Q Reset Root And Show All Ctrl+Alt+Shift+R
B o
& 0 E Analyze >
& 0 ©
A Find Ctrl+E
Call Tree View Filters ~

After setting a call tree root, information about the selected root is shown at the top of the view.
A single scrollable label shows the last few stack elements leading up to the root and a detail
dialog with the entire stack of the call tree root can be displayed by clicking on the Show More
button.

154

Thread selection: . All thread gri
Thread status: | = Runnable

Call tree root:

o0ups

~ | Aggregation level: @Methcds ~

~ | View mode:

com.sun. tools.javac.main, JavaCompiler . enterTrees «— com. sun. tools. javac. main. JavaCompiler, compile «— com.sun. tools.ja\ ¥ Show more x

«com.sun. tools. javac. comp.Enter.main
(=1 () N 100. 0% - 956 ms - 1inv. com.sun. tools.javac. comp.Enter.complete
B 55, 1% - 651 ms - 1inv. com.sun.tools.javac.code. Symbol$ClassSymbol. complete

B 27,9% - 267 ms - 1inv, com,sun,tools, javac.comp.Enter, da

13.9% - 37,543 us - 1inv. com.sun, tools javac,comp. Annotate.| @) Call Tree Root x

0.0% -6 ps - linw
0.0% -5ps - 2inv
0.0% -4ps - linv
0.0% -4ps - 1inv
0.0% -2ps - 1inw
0,0% -1ps- linw

. com.sun. tools. javac. util, ListBuffer, <init>
. java.util. Iterator . hasNext

. com.sun. tools. javac. util. ListBuffer.next

. java,util Iterator,next

. com.sun, tools. javac. util, List.iterator

. com.sun. tools.javac. comp. Annotate enter!

0.0% - 20 ps - 1inv. java.util.Set.add

Complete stack trace of the call tree root:

CompileTest.main(java.lang.String[1)

com, sun. tools. javac.api, JavacTaskImpl. call()

com. sun, tools. javac.api. JavacTaskImpl doCall()

com, sun, tools, javac. main.Main, compile (java.lang. String[], java.lang.5tring

0.0% - 2 ps - Zinv. com.sun.tools. javac.api.MultTaskListener. isEmpty
0.0% - 2 ps - 2inv. java.util.Iterator hasMext
0.0% - 1ps - linv, java.util.Iterator.next

com. sun. tools. javac. main. JavaCompiler.compile(com.sun. tools. javac. util.Lis!
com. sun. toals. javac. main. JavaCompiler.enterTrees{com. sun. tools. javac. util

o

Call Tree View Filters -

When you use the set root action recursively, the call stack prefixes will simply be concatenated.
To go back to the previous call tree, you can either use the Back button of the call tree history
to undo one root change at a time, or the Reset Root And Show All action in the context menu to
go back to the original tree in a single step.

6 H 2 82 8 % S L

Start

= 0 7| &[0

Show Record

® < @

Start Sawe Session Showe

ot ap Add Wi
Cerver D2th ool Setings | Recordings Recordings Tracking | PU" % pockmark | EPO% sdungs | M egend | cPU Back [Forward | g Analyze
= B
Thread selection: | §§ All thread groups ~ Aggregation level: | () Methods ~
Telemetries
Thread status: | =28 Runnable w | View mode: = Tree ~
. Call tree root: com.sun. toals. javac.main. JavaCompiler .enterTrees «— com.sun. tools. javac.main. JavaCompiler.compile — com.sun, toals.iaw b Show more | 3

What is most important about changing the call tree root, is that the hot spots view will show
data that is calculated for the selected root only, and not for the entire tree. At the top of the
hot spots view, you will see the current call tree root just like in the call tree view to remind of
you the context of the displayed data.

Thread selection: | §§ All thread groups | Aggregation level: (J) Methods -

Thread status: = Runnable ~ | Hotspotoptions: Self times w

Call tree root: com.sun.tools. javac.main. JavaCompiler. enterTrees «— com. sun. tools. javac. main. JavaCompiler. compile «— com.sun. tools.jau ¥ Show more x

Removing parts of the call tree

Hot Spot Self Time - Average Time Invocations
1, com.sun, tools. javac.util. List.reverse I 7,056 s (7 %) 18ps 4,020 ~
- /4, com.sun. tools. javac. util. List. prependList I 71340 ps (7 %) 30ps 2,357
- /&, com.sun. tools. javac. util. List. <init> I 57,055 ps (7 %) Ops 298,479
- /1, com.sun. tools. javac. file. ZipFileIndex sZipDirectory. readEntry I G, 17c s (6 o) 2ps 26,873
- /&, com.sun, tools, javac. util. List.nonEmpty I -, 241ps (6 %) Ops 591,329
1, java.util. AbstractCollection, <init> I 1504 ps (3 %) Ops 298,479
- /4, com.sun. tools. javac. util.List. setTail I 25,018 ps (3 %) Ops 291,369
- /%, com.sun. tools. javac. file. ZipFileIndex SEntry .compareTo(java.lang. Object) [21,372 ps (2 %) Ops 91,521
- /1, com.sun. tools. javac. file. ZipFileIndex$Entry .compareTo(com. sun. tools.j... 21,785 ps (2 %) Ops 91,521
-/, java.util.Map.get I 15,226 ps (1 %) Ops 50,074
1, java.util Arrays.sort Il 15,354 ps (1 %) 818 s 20
- /4, com.sun. tools. javac. file. ZipFileIndex. get4Bytel itleEndian 14,128 ps (1 %) Ops 133,230
- /&y, com.sun. tools. javac. file. ZipFileIndex.get 2BytelitteEndian 12,811 ps {1 %) Ops 107,712
java.lang.String.compareTo Il 12,328 ps (1 %) Ops 92,814
1, com.sun, tools. javac. file.RelativePathsRelativeFile, <init=(com.sun.tools. .. [l 10,514 ps (1 %) Ops 11,788
1, com.sun, tools.javac.util. Name.getBytes W 10,141 ps (1 %) Ops 14,898
1., com.sun, tools.javac. file, ZipFileIndex$ZipDirectory, buildIndex W 3,511 ps (0 %) 0 ps 20
com.sun. tools. javac. util. SharedMameTable. fromUtf W 8,350 ps (0 %) Ops 11,657
java.lang.5tring. <init> W 7,700 ps (0 %) Ops 28,563
1, com.sun, tools, javac. file.RelativePath, compareTo W 7,077 ps {0 %) Ops 29,754
t. com.sun. tools. iavac, util. Name.append W 6.942us (0 %) Ous 7999 w

Sometimes it's helpful to see how the call tree would look like if a certain method was not present.
For example, this can be the case when you have to fix several performance problems in one
g0, because you are working with a snapshot from a production system that cannot be iterated

155

quickly like in your development environment. After solving the main performance problem, you
then want to analyze the second one, but that can only be seen clearly if the first one is eliminated
from the tree.

Nodes in the call tree can be removed together with their sub-trees by selecting them and hitting
the Del et e key or by choosing Remove Selected Sub-Tree from the context menu. Times in ancestor
nodes will be corrected accordingly as if the hidden nodes did not exist.

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~
Thread status: | == Runnable ~ | View mode: = Tree w
E--ﬁ— 100.0% - 2,937 ms - 1inv, CompileTest.main ~
=8 @— 93.5% - 2,746 ms - 1inv. com.sun. tools.javac. api. JavacTaskImpl. call
=3 @ N 3.5% - 2,746 ms - 1inv. com.sun.tools.javac.api. JavacTaskImpl.doCall
E—J--Q— 93.5% - 2,746 ms - 1inv., com.sun, tools, javac, main. Main . compile
= @— 78.6% - 2,307 ms - 1inv, com,sun.tools.javac.main. JavaCompiler, compile
[~ () W 41,6% - 1,220 ms - Linv. com.sun. tools.javac.main. JavaCompiler. compile 2
= Q- .enterTrees
G =% Show Call Graph sin
& .
Add Method Trigger kempty
E @ Add As Exceptional Method
o)
@ "< Split Method with a Secript keFiles
"W @ Intercept Method With Script Probe [itFrecessAnnotations
>+ Merge splitting level Ctrl+Alt+M :_ssAnnotaﬁons
- ingEnvironment.dose
- & Remove Selected Sub-Tree Delete If”‘:"
{j Restore Removed Sub-Trees Ctrl+Alt+5
‘f Add Filter From Selection
@ Show Tree Legend
D'“@. < Show Node Details Ctrl+Ali+| nce b
Call Tree View Filters) 2| Show Source F4 "

There are two removal modes. With the All invocations mode, JProfiler searches for all invocations
of the selected method in the entire call tree and removes them together with their entire
sub-trees. The Sub-tree only option only removes the selected sub-tree.

@ Remove Mode X

There are two ways to remove the selected node:

@H ng
Allinvocations of the selected method in this view together with their
entire sub-trees will be removed.

() Sub-tree only

Only the selected sub-tree will be removed, other invocations of the
same method will remain untouched.

o

Just like for the Set As Root action, removed nodes influence the hot spots view. In this way, you
can check what the hot spots would look like if those methods were optimized to the point of
not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views will show
a line with the count of the removed nodes and a Restore Remove Sub-Trees button. Clicking on
that button will bring up a dialog where you can select removed elements that should be be
shown again.

156

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: == Runnable ~ | View mode: = Tree ~
Removed nodes: |1 removed node @
[=] 6— 100.0% - 1,981 ms - 1inv, CompileTest.main ~

=8 @— 90.3% - 1,789 ms - 1inv. com.sun. tools.javac.api. JavacTaskImpl. call

=8 @— 90.3% - 1,789 ms - 1inv. com.sun. tools.javac. api. JavacTaskImpl.doCall
f—}-@— 90,3% - 1,789 ms - 1inv, com,sun, tools, javac.ma -
[—JQ— TRl e L TR R € Select Removed Nodes to be Restored *
I 51.6% - 1,220 ms - 1inv, com.sun. tools.java
15.1% - 101 ms - 1inv. com.sun. tools.javac.main.Jd Currently removed nodes:
1.4% - 28,429 ps - Linv. com.sun. tools.javac.main|
0,0% - 493 ps - 1inv, com,sun, toals.javac.main, Ja
0,0% - 27 ps - Linv, com.sun, tools,javac.main. Javs
0.0% - 10 ps - 1inv, com.sun. tools javac.processin
0.0% - 7 ps - 1inv. com.sun. tools.javac. main. Javal
0.0% - 7 ps - 1inv. com.sun. tools.javac. util. Option
0.0% -4 ps - 1inv. com.sun. tools.javac.main. Javal
0,0% - 3 ps - 1inv. com.sun, tools.javac.util. Option

0.0% - 1 ps - 2inv, java.lang.StringBuilder., <init>
0.0% - 1 ps - 5inv. java.lang.StringBuilder.append
0.0% - 1 ps - 2inv. java.lang.StringBuilder . toString
M 21.0% - 415 ms - Linv. com.sun.tools javac.main.Jai
0,1% - 2,493 us - 1inv. com,sun. tools.javac, main, Main
0,0% - 570 ps - Linv, com,sun. tools.javac.main., JavaCs
0.0% - 427 ps - 1inv. com.sun.tools.javac. file.CacheF:
0.0% - 36 ps - 1inv. com.sun. tools. javac. main. MainSR: oK

() com.sun.tools.javac.main. JavaCompiler . enterTrees [4ll inv

Type into the list to start search

o EE
-

b
Cancel 4

Call Tree View Filters -

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots view is
the view filter. When you change your call tree filters, it has a large effect on the calculated hot
spots [p. 46] . To emphasize this interdependence with the call tree view, the hot spots view
shows the call tree view filter in a line above the view together with a button to remove the
additional filters.

Thread selection: 88 Al thread groups ~ | Aggregation level: | () Methods w
Thread status: == Runnable ~w | Hotspotoptions: | Self times ~
Call tree root: com. sun. tools. javac. main. JavaCompiler.generate «— com.sun. toole. javac.main. JavaCompiler. compile2 «— com.sun. tools. ¥| Show maore x
Removed nodes: 3 removed nodes 5=
Call tree view filters: Icnm.sun‘mnls xl
Hot Spot Self Time Average Time Invocations
1, java.io.OutputStream. dose I 10,005 us (5 %) 909 ps 12
-/, com,sun. tools.javac.jvm. Gen,genMethod I 7,740 ps (4 %) 151ps 51
- /&, java.io.FileQutputStream. <inits I G527 ps (4 %) 535 ps 12
- /&, com.sun. tools. javac. jvm. Gen.initCode I <, 757 ps (3 %) 93 ps 51
- /&, com.sun. tools.javac. jvm. Code. <init> I 3,377 ps (2 %) 66 ps 51
1, com.sun, tools, javac.jvm. Code .emitStackMapFrame I 3057 ps (1 %) 105 ps 29
- /1, com,sun. tools.javac.jvm.Pool.makePoolValue I 2,557 ps (1 %) 1lps 1,596
- /1, com.sun. tools. javac. jvm. Class\Writer SCWSignatureGenerator. assembleSig [l 1,307 ps (1 %) 3ps 585
+ /4, com.sun. tools. javac. code. Types$DescriptorCache. findDescriptorInternal - [l 1,652 ps (1 %) 207 ps 8
- /&, com,sun, tools, javac. jvm, ClassWriter,writePool Il 1,655ps (1 %) 137 ps 12
1, com.sun, tools, javac. code. Kinds kindMame M 1635 ps(1%) 818 s 2
1., com.sun, tools.javac.jvm.Gen,setTypeAnnotationPositions W 1,602 ps (19%) Bus 195
- /&, com.sun. tools.javac. jvm.Pool.put Il 1,570 ps (0 %) Ops 1,696
+ /1, com.sun. tools. javac. code. Type hasTag W 1,351 ps (0 %) Ops 3,928
- /%, com,sun, tools, javac, code, Types§26, visitClassType W 1,279 ps (0 %) lps 779
- /1, com.sun, tools, javac. code, TypeSClassType. accept W 1,130 ps {0 %) Ops 2,470
1, _com.sun. tools.javac, util. List. nonEmpty W 1,094 ps (0 %) Ops 7,387 ¥
Hot Spot View Filters v | @

Setting a call tree root, removing parts of the call tree and view filters can be used together, with
the limitation that view filters have to be set last. As soon as view filters are configured in the
call tree, the Set As Root and >Remove Selected Sub-Tree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a graph that
is limited to the same call tree root, does not include the removed methods and uses the
configured call tree view filters. At the top of the graph, the information about these changes is
displayed in a similar form as in the call tree.

157

@ Create call graph X

1. Select graph options Select options for the call graph
2, select first node

The call graph can be calculated for all threads, a thread group or a single thread as well as
for any aggregation level, The thread status selection determines the meaning of times that
are displayed in the call graph.

Thread selection: | §i§ All thread groups -
Thread status: B Runnable w
Aggregation level: 0 Methods ~

Use root that was set in the call tree view
Use view filter that was setin the call tree view

Remove nodes that were removed in the call tree view

MNext B Cancel

When creating a new graph in the graph view itself, check boxes in the wizard let you choose
which of these call tree adjustment features should be taken into account for the calculation of

the call graph. Each check box is only visible if the corresponding feature is currently used in the
call tree view.

Thread selection: | §§ All thread groups Aggregation level: | () Methods
Thread status: | =88 Runnable

Wiew filkers: com.sun. tools
Call tree root: com.sun.tools. javac.main. JavaCompiler. generate «— com. sun. tools. javac.main. JavaCompiler. compile2 «— com.sun. tools. javac.me »| Show more
Removed nodes: |3 removed nodes Show mare

-

c.s.tjjvm.Code
endScopes
1,438 ps, 67 ps self 110 in

=

[c.stjjvm.Gen
& visitMethodDef
109 ms, 153 us self, 51 inv.

c.stjjvm.Gen
a gensStat
86,321 us, 247 ys self, 2651

:

NJ| |H e e = =X n .

158

B.4 Splitting The Call Tree

Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points so
you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into the call
stack and show semantic information that has been extracted from the method invocation above
the inserted node. These splitting nodes allow you to see additional payload information directly
inside the call tree and to analyze their contained sub-trees separately. Each splitting type can
be merged and unmerged on the fly with the actions in the context menu and has a cap on the
total number of splitting nodes so that the memory overhead is bounded.

Call tree splitting and probes

Probes [p. 91] can split the call tree according to the information that they collect at selected
methods of interest. For example, the servlet probe splits the call tree for each different URL.
The splitting in this case is highly configurable, so you can include only the desired parts of the
URL, some other information from the servlet context or even produce multiple splitting levels.

-

Thread selection: @ All thread groups ~ | Aggregation level: | () Methods w

'ﬂ' Live memory =
J Thread status: E3E Runnable w | View mode: = Tree w

. !ﬁ— &7,7% - 3,538 me - 7inv, com, ejt.demo,server.DemoServers3.run
'ﬁ Heap Walker = 32.8% - 1,323 ms - 2 inv. HTTP: fdemo/fview2
= @- 32.8% - 1,323 ms - 2 inv. com.ejt.demo.server.handlers.RequestHandler.run
+ W 32.4% - 1,308 ms - 2inv. com.ejt.demo.server.handlers. RequestHandler. perfarmWork
i 0.4% - 15,520 ps - Zinv. com.ejt.demo.server.handlers.RequestHandler. workWithGlobalResource
CPU views - () M 19.8% - 798 ms - 1inv. HTTP: fdemo/fview3
W 18,2% - 732 ms - 1inv. HTTP: /demojviewl
W 15.8% - 636 ms - Linv, HTTP: fdemo/view4
1.0% - 41,743 ps - Linv. com.ejt.demo.server. handlers. JmsHandler .onMessage
0.0% - 1,703 ps - 1inv. com.ejt.demo.server.handlers. JdbcJobHandler.run
0.0% - &7 ps - Linv, com.ejt.demo.server,handlers, JImsHandler $JmeType. <dinit>
0.0% - 17 ps - 2inv. com,ejt.demo.server.handlers, JmsHandler $IJmsType.values

Call Graph 0.0% - 10 ps - Linv. com.ejt.demo.server.handlers.RequestHandler. <dinit=

Call Tree

Hot Spots

. 0.0% - 2 ps - 1inv. com.ejt.demo.server.handlers. JmsHandler $JmsType. getDestination
Method Statistics 0.0% - 1 ps - 1inv. com.ejt.demo.server.handlers. JmsHandler $JmsType. getDuration
8! 10.0% - 405 me - 1inv. com.ejt.demo.server.gui. GuiDemoServer $151.run

12,2% - 89,278 ps - 2inv. java.util.concurrent. ThreadPoolExecutor$Worker .run

Complexity Analysis
Call Tracer

JavaScript XHR

Threads

[o T Call Tree View Filters v | @
-

If you write your own probe, you can split the call tree in the same way, with both the embedded
[p. 143] and the injected [p. 138] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available to probes can be used directly in the call tree,
with the Split Method With a Script action. In the screen shot below, we want to split the call tree
for a JMS message handler to see the handling of different types of messages separately.

159

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: == Runnable ~ | View mode: = Tree ~

[N I 57, 7% - 3,538 ms - 7 inv. com.ejt.demo.server.DemoServer$3.run

= () . 32.8% - 1,323 ms - 2inv. HTTP: /demojview2
(=) = 32.8% - 1,323 ms - 2inv. com.ejt.demo.server.handlers. RequestHandler.run
W 32,4% - 1,308 ms - 2 inv. com.ejt.demo,server, handlers,ReguestHandler. performork.
0.4% - 15,520 ps - 2 inv, com.ejt.demo.server, handlers.RequestHandler .workWithGlobalResource
-G M 19.8% - 798 ms - 1inv. HTTP: /demojview3
[+ M 15.2% - 732 ms - 1inv. HTTP: /demojview1
[W 15.8% - 636 ms - 1inv. HTTP: /demo/viewd
= 1.0% - 41,743 ps - 1inv. com.ejt.demo.server.handlers, JmsHandler . onMessagg

[}

) 1.0% - 41,524 ps - Linv. com.ejt.demo.server.handlers. JmsHandler. handlg -(: Show Call Graph

0.6% - 23,793 ps - 1inv. com.ejt.demo.server.handlers. ImsHandler.mi .

8 0.4% - 17,725 ps - 1inv. com.ejt.demo.server.handlers. ImsHandler .pe Add Method Trigger

0.0% - 1,703 ps - Linv. com.ejt.demo.server. handlers. JdbcJobHandler.run @ AddAs Exceptional Method

0,0% - 87 ps - 1inv. com.ejt.demo.server,handlers, JmsHandler $JmsType, <clir = -

0.0% - 17 ps - 2inv. cam.eJt.demo.sarver.handlers.JmsHand\erSJmsTyDe‘vaIu-I“c Split Method with a Script I

0,0% - 10 ps - 1inv. com.ejt.demo.server.handlers.RequestHandler, <dlinit>= ° Intercept Method With Script Probe

0.0% - 2 ps - 1inv. com.ejt.demo.server.handlers. ImsHandler $ImsType.getDe
0.0% - 1ps - Linv. com.ejt.demo.server.handiers. JmsHandler $ImsType.getol 2+ Merge splitting level Ctrl+Alt+ M

-3! 10,0% - 405 ms - 1inv. com.ejt.demo,server,gui.GuiDemoServers1s1l.run

L EBE

12.2% - 89,278 ps - 2 inv. java.util. concurrent. ThreadPoolExecutor SWorker. run 5= Remove Selected Sub-Tree Delete
5; Restore Removed Sub-Trees Ctrl+Alt+5
T Add Filter From Selection >
@ Show Tree Legend =
Call Tree View Fiters & Show Node Details Ctrl+Alt+] p

Instead of writing a probe, you just enter a script that returns a string. The string is used for
grouping the call tree at the selected method and is displayed in the splitting node. If you return
nul I, the current method invocation is not split and added to the call tree as usual.

@ Edit 4
Settings Edit Search Code Help
o = = y
o Y B E|m | % O
Undo Reds | Copy Cut Pase j;‘;‘;‘y Find Raple | TS0 e

Flease enter an expression (no trailing semicalon) or a script (ends with & return statement) that consists of regular Java
code, The following parameters are available:

Ellmlﬂl

- com.jprofiler. api.agent.ScriptContext scriptContext

- java.lang.Class<Object> ¢
- com.ejt.dema.server.handlers, JmsHandler currentObject

- javax.jms.Message message
The expected return type is java.lang.String

Script:

1 Inessage. getJMSDestination().toString()

concel

The script has access to a number of parameters. It is passed the class of the selected method,
the instance for non-static methods, as well as all method parameters. In addition, you get a
Scri pt Cont ext object that can be used to store data. If you need to recall some values from
previous invocations of the same script, you can invoke the get Obj ect/ put Obj ect and
get Long/ put Long methods in the context. For example, you may want to split only the first
time a particular value for method parameter is seen. You could then use

if (scriptContext.getObject(text) !'= null) {
scri pt Cont ext . put Obj ect (text);
return text;

} else {
return null;

}

160

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the above screen
shot, we now see the handling code for each JMS message destination separately.

N 59,7% - 24,360 ms - 10 inv, java.util.concurrent. ThreadPoolExecutor SWorker.run
[EI-1) . 40, 3% - 16,472 ms - 7inv. com.ejt.demo. server.DemoServer$3.run
N 10.2% - 4,172 ms - Sinv. HTTP: fdemo fview3

n

19.9% - 4,050 ms - 4inv. HTTP: /demo/views

0 8,0% - 3,246 ms - 3inv, HTTP: fdemo/views

- 2,299 ms - 9inv. com.ejt.demo,server.handlers, JdbcJobHandler.run

13,4% - 1,397 ms - 2inv, HTTP: /demo/view 1

12.1% - 841 ms - 2inv. HTTP: fdemo/view?

- & inv. com.ejt.demo server handlers. JmsHandler .onMessage
s - 5 inv. deliveryService
8 326 ms - 5inv. com.ejt.dema.server.handlers, JmsHandler.handleMessage
0,7% - 302 ms - 5inv. com.ejt.demo,server.handlers, JmsHandler .performork

0.0% - 17,732 ps - 4inv. com.ejt.demo.server.handlers. JmsHandler. makeWebServiceCall
0.0% - 6,880 ps - 5 inv. com.ejt.demo.server. handlers. JmsHandler . makeRmiCal

e
&
o
B

0,0% - 9,325 ps - 1inv, com.ejt.demo,server,handlers, JmsHandler handleMessage

[0,3% - 118 ms - 5inv. com.ejt.demo.server handlers.RequestHandler.run

0.0% - 44 ps - 10 inv. com.ejt.demo.server.handlers. JnsHandlersImsType. values
0.0% - 4 ps - 5 inv. com.ejt.demo.server.handlers. ImsHandler $ImsType.getDestination
0.0% - 3 ps - 5 inv. com.ejt.demo. server.handlers. JImsHandler $ImsType.getDuration

The splitting location is bound to a method, not to the selected call stack. If the same method is
present somewhere else in the call tree, it will be split as well. If you use the Merge splitting level
action, all splits will be merged into a single node. That node gives you a chance to unmerge the
split again.

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: | == Runnable ~ | View mode: = Tree w

[-A) M 58.2% - 31,719 ms - 11 inv. java.util.concurrent. ThreadPoolExecutor SWorker.run
- 1) e 41.8% - 22,737 ms - Tinv. com.ejt.demo. server.DemoServer$3.run

89.5% - 5,180 ms - Sinv. HTTP: /demo/views

03,5% - 5,163 ms - & inv. HTTP: /demojview3

1 8,4% - 4,569 ms - 4inv, HTTP: fdemo/views

15,9% - 3,188 ms - 11 inv. com.ejt.demo,server.handlers. JdbcJobHandler.run
13.8% - 2,063 ms - 3inv. HTTP: demo fview2

13.6% - 1,951 ms - 3inv. HTTP: /demo/view1

0,9% - 498 ms - 8 inv, com.ejt.demo, server, handlers, JImsHandler .onMessage

9% - 482
- 432ms - 7inv, com.ejt.demo.s{ ®5 Show Call Graph
@ 0.0% - 9,325 ps - 1inv. com.ejt.demo.sery .

% 0.2% - 118 ms - Sinv. com.ejt.demo.server.hz Add Method Trigger

- -

-

0.0% - 60 ps - 14inv. com.ejt.demo.server.hg @) Add As Exceptional Method
0.0% - 4ps - 7 inv, com.ejt.demo, server.hand . X
0.0% - 4 ps - 7 inv, com.ejt.demo, server.hand *¢ Split Method with a Script

@ Intercept Method With Script Probe

Ix Unmerge splitting level Crl+ Alt+M I
5= Remove Selected Sub-Tree Delete
5& Restore Removed Sub-Trees Ctrl+Alt+S
Y Add Filter From Selection
Call Tree View Filters @ Show Tree Legend ~ | @

If you produce too many splits, a node labeled capped method splits will contain all further split
invocations, cumulated into a single tree. With the hyperlink in the node, you can reset the cap
counter and record some more splitting nodes. For a permanent increase in the maximum
number of splits, you can increase the cap in the profiling settings.

161

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: | = Runnable ~ | View mode:

=X)_ 65.0% - 19,961 ms - 10 inv. java.util.concurrent. ThreadPoolExecutor $Worker.run
=8 @- 55.8% - 17,135 ms - 225 inv. com.ejt.demo.server.handlers. WsHandlerImpl.getExchangeRate

=< N 54,6% - 16,736 ms - 220 inv. capped method splits reset splitting cap counter &)
9"0_ 54.6% - 16,778 ms - 220 inv, com.ejt.demo.server.handlers,WsHandlerImpl.lookupExchangeRate
i . 54,6% - 16,776 ms - 220 inv. com,ejt.mock.MockHelper . runnable
0.0% - 569 ps - 220 inv. java.util.Random. nextInt
=< 0.3% - 94,618 ps - 1inv, Time stamp: 1517234816354
= 0.2% - 73,583 ps - Linv. Time stamp: 1517234816275
= 0,2% - 70,206 ps - Linv, Time stamp: 1517234816336
=G 0.2% - 56,122 ps - Linv, Time stamp: 1517234816220
=G 0.2% - 51,576 ps - Linv. Time stamp: 1517234816409
ol 9.2% - 2,817 ms - 48 inv. RMI: 192.168.218.1
@- 35.0% - 10,765 ms - 7inv. com.ejt.demo.server. Demoserver §3.run

O~ Call Tree View Fiters ~ | @

To edit split methods after you have created them, go to the session settings dialog. If you don't
need a particular split method anymore, but want to keep it for future use, you can disable it
with the check box in front of the script configuration. This is better than just merging it in the
call tree, because the recording overhead may be significant.

@ Session Settings X
9

Define Filters Exceptional methods Ignored methods Split methods

This list contains methods that should be split into multiple branches in the call tree, simiarly to
Application .<: request splitting of the servlet probe. A configurable script returns a string that is displayed above
Settings the actual method node. For example, you can split the call tree for different argument values

Y If this feature is abused, the call tree can become very large, adding significant overhead.

m com.ejt.demo.server. handlers. JmsHandler.onMessage (javax. jms.Message)

Filter
Settings b1 4= T R It (el A message . getIMSDestination(). teString()

Frofiling
Settings

Triggers
Settings

E | A

Database
Settings v

-

General Settings

162

B.5 Call Tree Analyses

The call tree [p. 46] shows the actual call stacks that JProfiler has recorded. When analyzing the
call tree, there are a couple of transformations that can be applied to the call tree to make it
easier to interpret. These transformations can be time-consuming and change the output format
in a way that is incompatible with the functionality in the call tree view, so new views with the
results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call tree
analysis actions from the tool bar or the context menu.

2 8 2 2% 09 %00 <4

St Recobiss Trama | PO bl | B0t cime, | b Zh | RN | e ponead | 00 Jamivee

i I Collapse Recursions Ctrl+Alt+L I
Thread selection: | # All thread groups Calculate Cumulated Outgoing Calls Ctrl+Alt+-G Methods ~
Thread status: | EEE Runnable Calculate Backtraces To Selected Method Ctrl+Alt+B |Tree ~
[=- () wm—100.0% - 2,337 ms - Linv. CompileTest.main ~

f—}-@ N 53,5% - 2,746 ms - 1inv, com,sun.tools, javac.api. JavacTaskImpl.call

=1 @— 93.5% - 2,746 ms - 1inv. com.sun. tools.javac.api. JavacTaskImpl doCall

= @— 93.5% - 2,746 ms - 1inv, com,sun. tools.javac. main.Main. compile

W 73.6% - 2,307 ms - 1inv. com.sun. tools.javac. main. JavaCompiler .compile

@- 41.6% - 1,220 ms - 1inv. com.sun. tools.javac. main. JavaCompiler.compile2

EQ- 27.7% - 813 ms - 1inv, com,sun. tools,jgvac.main. JavaCompiler, attribute
e L_127.7% - 813 ms - Linv. com.sun. tools. javac. comp. Attr.attrib

H ~{y) W 27, 7% - 813 ms - 1inv. com.sun. tools.javac.comp. Attr. attribClass
CoE- 0.0% - 1 ps - Linv. com.sun. tools. javac.tree. JCTree hasTag
0.0% - 7 ps - 2inv. com.sun. tools. javac.util. AbstractLog.useSource
0.0% -4 ps - 1inv, com,sun. tools.javac, comp, CompileStates.isDone
0.0% - 1ps - 1inv, com.sun, tools.javac. api.MultiTaskListener.isEmpty
B 0.0% - 1ps - 1inv. com.sun. tools.javac.main, JavaCompiler.errorCount
15.3% - 184 ms - 1inv. com.sun. tools javac. main. JavaCompiler.desugar
15.4% - 157 ms - 1inv. com.sun.tools. javac.main. JavaCompiler. generate
12,2% - 63,365 ps - 1inv, com,sun,tools,javac.main, JavaCompiler, flow
0,0% - 35 ps - Linv, com.sun,tools,javac.main, JavaCompiler §2, <dinit>
0,0% - 24 ps - 1inv. com.sun.tools,javac.main, JavaCompiler . reportDeferredDiagnostics
0.0% - 16 ps - 1inv. com.sun. tools.javac.comp. Todo.poll
0.0% - 7 ps - 2inv. com.sun. toals. javac. comp.Todo, size
0.0% - 2 ps - 1inv. com.sun. toals.javac.main. JavaCompiler.warningCount
0,0% - 1ps - 2inv. com.sun, tools.javac. main, JavaCompiler. printCount
i 0,0% - 1ps - 1inv, com.sun. tools.javac. util. Log. hasDiagnosticListener
Q- 32.6% - 956 ms - 1inv. com.sun. tools.javac.main. JavaCompiler.enterTrees v

Call Tree View Filters v @

A nested view will be created below the call tree view. If you invoke the same analysis action
again, the analysis will be replaced. To keep multiple analysis results at the same time, you can
pin the result view. In that case, the next analysis of the same type will create a new view.

6890 recursions were collapsed in the selected cal tree fragment) x (] &
Thread selection: | §§ All thread groups Aggregation level: | () Methods

Thread status: | @88 Runnable

Call tree root: com.sun. tools. javac. main. JavaCompiler . attribute «— com.sun. tools.javac.main. JavaCon »| Show mare
(=)L) n— 100,0% - §13 ms - 1inv, com,sun,tools javac.comp.Attr.attrib -
=} @%— 100.0% - 813 ms - 12 inv. com.sun. tools.javac. comp.Attr.attribClass
¢ ()) e—100,0% - 813 ms - 31inv. com.sun, tools.iavac.comp, Attr, attribClass

In live sessions, the result views are not updated together with the call tree and show data from
the time when the analysis was made. To re-calculate the analysis for the current data, use the
reload action. If the call tree itself has to be re-calculated, like in the allocation tree with disabled
auto-updates, the reload action takes care of that as well.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to analyze.
The "Collapse recursions" call tree analysis calculates a call tree where all recursions are folded.
The parent node of the current selection in the call tree serves as the call tree root [p. 154] for
the analysis. To analyze the entire call tree, select one of the top-level nodes.

163

-

() 6890 recursions were collapsed in the selected call tree fragment & x &\ D &

-i:l Live memory
’ Thread selection: @ Al thread groups Aggregation level: | () Methods
Thread status: | == Runnable
Heap Walker
Call tree root: com. sun. tools. javac. main. JavaCompiler. attribute — com.sun. toals. javac.main. JavaCon »| Show more
. 5-()) n—100.0% - 813 ms - Linv. com,sun. tools.javac,comp. Attr.attrib ~
CPU views () () mm—100.0% - 813 ms - 12 inv. com.sun.tools javac.comp. Attr attribClass
() @) m—100.0% - 13 ms - 31inv. com.sun. tools.javac. comp. Attr. attribClass

- () () — 00, 7% - 511 ms - 12 inv, com,sun, tools, javac, comp, Attr attribClassBody

m 0,2% - 1,613 ps - 12inv. com.sun, tools.javac, comp. Attr.isSerializable

0,0% - 175 ps - 12 inv. com.sun. tools.javac, code.Lint. augment

0.0% - 175 ps - 24inv. com.sun. tools.javac. util. Abstract_og. useSource

0.0% - 162 ps - 12 inv. com.sun. tools. javac. comp.Check. checkClassOverrideEqualsAndHashI

4 CallTree

Collapsed Recursions

blatsnots 0.0% - 125 ps - 31inv. com.sun. tools, javac. code, Types.supertype

0,0% - 72 ps - 12 inv, com.sun. tools.javac.comp, Check.checkFunctionalInterface
Call Graph 0.0% - 48 ps - 54inv. com.sun.tools.javac.code. Type.hasTag

0.0% - 35 ps - 29 inv. com.sun. tools.javac.comp. Check.checkNonCydic
Method Statistics 0.0% - 26 ps - 12inv. com.sun.tools.javac.code DeferredLintHandler. flush

0.0% - 24 ps - 12 inv. com.sun. tools.javac.comp. Check.checkDeprecatedAnnotation
0,09 - 12 ps - 11inv, com.sun.tools.javac.comp, TypeEnvs.get
0,09 - 11 ps - 22 inv. com.sun. tools.javac.tree, JCTree.pos

Complexity Analysis

Call Tracer 0.0% - 9 ps - 20 inv. com.sun. tools.javac. comp. Check.setlint
= moved 166 ps - 19inv. com.sun.tools.javac.comp. Attr.attribClass
JavaScript XHR Gi-@ @) 0.0% - 35 ps - 12inv. com.sun. tools.javac. comp. Annotate. flush
(@ 0.0% - 1pe - Linv. com.sun.tools javac.tree. JCTree.hasTag b
Co= < >
Threads
— Class View Filters ~ | @

=

Arecursion is detected when the same method was already called higher up in the call stack. In
that case, the sub-tree is removed from the call tree and stitched back to the first invocation of
that method. That node in the call tree is then prefixed with an icon whose tool tip shows the
number of recursions. Below that node, stacks from different depths are merged. The number
of merged stacks is shown in the tool tip as well. The total number of collapsed recursions is
shown in the header, above the information about call tree parameters that were set for the
original call tree.

L) N 100.0%: - 13 ms - 1inv. com.sun.tools javac.comp. Attr.attrib -
- ()) m—100.0% - 813 ms - 12 inv, com.sun, tools. javac, comp. Attr attribClass

) I 00, 7% - 811 ms - 12 inv. com.sun. tools.javac.comp. Attr . attribClassBody

- 175 ps - 1Zinv. com.sun. tools. javac. code.lint. augment

- 175 p= - 24 inv. com.sun. toals. javac.util. AbstractLog.useSource

- 162 ps - 12 inv, com.sun, tools, javac. comp. Check, checkClassOverrideEqualsAndHashl
- 125 ps - 31inv., com.sun, tools,javac. code. Types. supertype

- 72 ps - 12 inv. com.sun.tools. javac.comp. Check. checkFunctionallnterface

h- 4Rt ne - Bdinv ram ein tanle iavac rode Tune hasTan

For a simple recursion, the number of merged stacks is the number of recursions plus one. So
a node whose recursion tool tip shows "1 recursion" would contain a tree with nodes that show
"2 merged stacks" in their recursion tool tip. In more complex cases, recursions are nested and
produce overlapping merged call trees, so that the number of merged stacks varies from stack
depth to stack depth.

At the point where a sub-tree is removed from the call tree to be merged higher up, a special
"moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one particular
call stack where that method has been invoked. The same method of interest may have been
invoked in different call stacks and it's often useful to analyze a cumulated call tree of all those
invocations in order to get better statistics. The "Calculate cumulated outgoing calls" analysis
shows a call tree that sums all outgoing calls of a selected method, regardless of how the method
was invoked.

164

-

Live memaor:
l" " Y
b Heap Walker
I CPU views

4 CallTree

Cumulated Cutgoing

145 top-evel call sites of the selected method were merged)

Thread selection: @ Al thread groups aggregation level: | (@) Methods

X |2 | &

Thread status: | =28 Runnable Collapse 333 recursions in the merged call tree fragment
=) & (7) SE—100.0% - 545 ms - 661 inv. com.sun. tools. javac. code, Symbol ClassSymbol .complete
& @ I 00, 9%: - 944 ms - 727 inv. com.sun. tools.javac.code. Symbol.complete

=) () m— g1, 7% - 866 ms - 169 inv. com.sun. tools.javac, jvm, ClassReader$ 1. complete
= @C) I T1,7% - 866 ms - 169 inv, com.sun, tools.javac.jvm. ClassReader, complete

0.3% - 3,190 ps - 133 inv. com.sun. tools. javac, comp. Annotate. flush

0,2% - 1,970 ps - 141 inv. com,sun, tools, javac.jvm.ClassReader, completeEndosing
0,1% - 515 ps - 141 inv. com,sun.tools.javac.code, ScopeSErrorScope, <init>

0.0% - 107 ps - 144 inv. com.sun.tools.javac.jvm.ClassReader, completeOwners

) NN 5,75 - 620 ms - 28 inv. com.sun.tools.javac.jvm. ClassReader. filln{com.sun. tools.ja
%) I 25.3% - 238 ms - 141 inv. com.sun. tools. javac. jum. ClassReader . filln{com. sun. tools. javac

Hot Spots ! "
0.0% - 53 ps - 100 inv. com.sun. tools.javac. comp. Annotate. enterStart
Call Graph 0.0% - 42 ps - 95 inv. com.sun. tools. javac. comp. Annotate.enterDoneWWithoutFlush
[0 7. 7% - 72,882 ps - 12inv. com.sun, tools.javac, comp. MemberEnter. complete
. [0.4% - 4,017 ps - 3 inv. com,sun, tools. javac, code, Symtabs2, complete

Beliod s [C) 0.1% -830 ps - 2inv. com,sun. tools.javac.code.Symtabs1.complete

By e @ %) 0.0% - 118 ps - 16 inv. com.sun. tools.javac. code. Type SErrorType. <init>

Call Tracer

JavaScript XHR
—-_— £ >

Threads

=

~ @

Class View Filters
=

For the selected method, JProfiler collects all its top-level invocations without considering recursive
calls and cumulates them in the result tree. The header shows how many such top-level call sites
were summed in that process.

At the top of the view, there is a check box that allows you to collapse recursions in the result
tree, similar to the "Collapse recursions" analysis. If recursions are collapsed, the top level node
and the first level of outgoing calls show the same numbers as the method call graph.

Calculating backtraces

The "Calculate backtraces" analysis complements the "Calculate cumulated outgoing calls"
analysis. Like the latter, it sums all top-level calls of the selected method without considering
recursive calls. However, instead of showing outgoing calls, it shows the back traces that contribute
to the invocations of the selected method. The call originates at the deepest node and progresses
toward the selected method at the top.

- I

-I' Live memaory
s

ﬁ Heap Walker
I CPU views

Merged backtraces for 166 cal sites of the selected method 0

X & ® @

Thread selection: §§ Al thread groups Aggregation level: | () Methods

Thread status: | @88 Runnable Summation mode: (@) Total times () Self times

[+] Collapse 322 recursions in the merged call tree fragment

Ggf () S 100.0% - 345 ms - 661 hot spot inv. com.sun. tools. javac. code. Symbol $ClassSymbol.complete

M 53.0%: - 651 ms - 59 hot spot inv. com.sun. tools. javac. comp.Enter.complete
8 (%) 98.4% - 78,939 ps - 18 hot spotinv. com.sun. tools.javac.jum.ClassReader. loadClass
4 CallTree [+ () 0 7.0% - 66,024 ps - 29 hot spot inv. com.sun. tools.javac.code, Symbol§Classsymbol. flags
Gjl 5.0% - 46,914 ps - 12 hot spat inv, com.sun, tools.javac, comp. Attr, visitClassDef
Backirams -- 13.8% - 35,643 ps - 9 hot spot inv. com.sun. tools. javac. code. Symbol $ClassSymbol.members

k-1 2,28 - 21,012 ps - 7 hot spot inv. com.sun. tools. javac. code. TypesClassType. complete

Hot Spots ()1 2.0% - 18,465 ps - 41 hot spotinv. com.sun. tools.javac. code.Symbol$ClassSymbol getinterfaces
[E28 G} 1.5% - 14,090 ps - 14 hot spotinv, com.sun.tools.javac.jvm.ClassReaders2,getEndosingType

call Graph 1.3% - 12,089 ps - 66 hot spat inv. com,sun. toals.javac. code, SymbolSClassSymbol.getSuperdass
[G) 0.0% - 183 ps - 406 hot spotinv. com.sun. tools.javac.jvm. Class\Writer .enterInner

Method Statistics
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

V@

Class View Filters
-

This analysis is similar to the hot spots view, only that by default it sums total times instead of
self times for the selected method, and the hot spots view only shows methods whose self time
is a significant fraction of the total time. At the top of the view there is a radio button group
labeled Summation mode that can be set to Self times. With that selection, the summed values
for the selected method match that of the default mode in the hot spots view.

165

In the back traces, the invocation counts and times on the back trace nodes are only related to
the selected method. They show how much the invocations along that particular call stack have
contributed to the values of the selected method. Similar to the "Calculate cumulated outgoing

calls" analysis, you can collapse recursions and the first level in the backtraces is equivalent to
the incoming calls in the method call graph.

Call tree analyses in the call graph

In the call graph, each method is unique while in the call tree methods can occur in multiple call
stacks. For one selected method, the "Calculate cumulated outgoing calls" and the "Calculate
backtraces" analyses are a bridge between the viewpoints of the call tree and the call graph.
They put the selected method in the center and show the outgoing and incoming calls as trees.
With the Show Call Graph action, you can switch to the full graph at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from graph
to a tree view. When you are working in the call graph, you can show the cumulated outgoing

calls and the backtraces as trees for any selected node in the graph with the same call tree
analyses as in the call graph.

-

Thread selection: @ Al thread groups Aggregation level: | () Methods
'ﬂ' 'l Live memary
" Thread status: | @88 Runnable

] = - I‘, =
nﬁ Heap Walker Lo = c.s.tjjvm ClassReader B |
& | \
® - loadClass i \
139 ms, 348 ps self, 207 inv. VA
\
I CPU views x 'wl I\I
5} lll |
- = c.stjcomp.Enter B |\
Call Tree complete :—\ ||||I
956 ms, 37 us self, 1inv. VL
Hot Spots W

 — \
Calculate Backtraces To Selected Method Ctrl+Alt+B W
Call Graph

Calculate Cumulated Outgoing Calls Ctrl+Alt+G slassSymbol
members
72,060 us, 3,033 us self, 15563 inv.

Method Statistics

Complexity Analysis

Call Tracer =2 c.stj.code Symhol§ClassSymbol
= getinterfaces
18,505 ps, 38 s self, 45 inv.

3|J| |E|]

JavaScript XHR

Threads

W o

= c.s.tijym.ClassReader§2
= getEnclosingType
N

AN 4T e OF 1 enl OF ines
Manitre & lnres =
-

- c.stjel

ﬂﬂl:.v

>

In the Intelli) IDEA integration [p. 120], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations

A little bit different from the previous call tree analyses is the "Show classes" analysis in the
allocation call tree and the allocation hot spots views. It does not transform the call tree to

another tree, but shows a table with all allocated classes. The result view is similar to the recorded
objects view [p. 60], but restricted for a particular allocation spot.

166

-

” Telemetries 7650 instances in 17 dasses have been allocated at the selected call stack x &R (@

Recorded allocations of: |Live objects at 00:05, Al dasses

'l:l' Live memory Aggregation level: @ Methods
Allocation spot: java.awt.Graphics2D. fill — bezier.BezierAniméDema.drawDemo — bezier Bezier A | Show more
All Objects
Name Instance Count Size
RecededUilecs java.util HashMapshiode I 1535 58,752bytes a
4 Allocation Call Tree |.nt[] I 512 330 k8
java.awt.geom.AffineTransform I 12 44,064 bytes
Allocation Classes java.awt.geom.Point2D$Double I 12 19,584 bytes
float[] Il 05 12,240 bytes
Allocation Hot Spots java.awt.GradientPaintContext Il 05 19,584 bytes
java.awt.Rectangle I G0s 9,792 bytes
Class Tracker java.awt.RenderingHints | 4,836 bytes
java.awt.geom.Path2DSFloatSTxIterator Il :0e 9,792 bytes
ﬁ Heap Waker java.awt.geom.Point2D$Float I G0s 7,344 bytes
java.awt.geom.Rectangle 2D Float I 05 9,792 bytes
java.lang.Integer Il :0e 4,896 bytes
I . java.lang.ref. WeakReference I 05 9,792 bytes
java.util. HashMap Il 05 14,683 bytes
java.util.HashMap$hode[] Il :0e 14,688 bytes
— sun.java2d. loops. GraphicsPrimitiveMar SPrimitiveSpec I 30 4,896 bytes ¥
B Threads Total: 7,650 589 kB
- Class View Filters ~ | @

In the analysis result views that show call trees, both the "Calculate cumulated outgoing calls"
and the "Calculate backtraces to selected method" analyses are available. Invoking them creates
new top-level analyses with independent parameters. Any call tree removals from the previous
analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis when used

from a call tree analysis result view. Instead, it creates a nested analysis that is two levels below
the original view.

167

C Advanced CPU Analysis Views

C.1 Method Statistics And Exceptional Method Recording

In some situations, it's not the average invocation time of a method that is a problem, but rather
that a method misbehaves every once in a while. In the call tree, all method invocations are
cumulated, so a frequently called method that takes 100 times as long as expected once every
10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the method statistics view and the exceptional method
recording feature in the call tree.

Method statistics view

The method statistics view shows information about the distribution of call durations to each
method. With the histogram of all recorded call durations, you can check if you are dealing with
single outliers or a continuous spectrum of durations. The standard deviation and the outlier
coefficient that is calculated as (maxi mum tine - nedian tine) / nedian tinecanhelp
you to quantify methods in this respect and sort them in the method table.

Y

Thread status: (B30 All states

I CPU views Method Total Time Inv. Avg. Time Median Time Min. Time Max. Time Std. Dev. §) Outlier ... = &)
bezier.BezierAnimsD. .. 799 ms 41 1,813 ps Ops Ops 200 ms 18,950 ps 200072 A
T besie b Anm... [Gespsl Spsl 4wl Zooms| S06iwsl 002
bezier.BezierAnimsD. .. 6,112 ps 5,244 1ps Ops Ops 4,514 ps 62 ps 4514
Hot Spots bezier BezierAnimsD. .. 1,589 ms 437 3,637 s 1,900 ps 842 ps 202 ms 19,056 ps 105.36
bezier Bezier AnimsD. .. 59,380 ps 436 136 ps 125 ps 47 ps 9,394 ps 44 ps 74.15
Call Graph bezier.BezierAnimsD. .. 3,547 us 437 8us 2ps 2ps 56 ps 8us 27
iy bezier BezierAnimsD. .. 564 ps 438 lps Ops Ops 19ps lps 19
Method Statistics bezier BezierAnimD... 4,663 s 437 10ps 4us aps 548 10 s 13.75
bezier BezierAnimsD. .. 13,231ps 438 I0ps 13ps 13ps 99 ps 30 ps 6.62
C lexity Anal
AR EOR bezier BezierAnimsD. . 23,094 s 438 5208 230 2308 145 s 4315 53 W
Call Tracer
Class View Filters ~ | @
JavaScript XHR T 1 T T T T T T T T T |
100 ms 200
—
Threads T
£
§ 1000
c
Monitors & locks 2 10
&
2 10
g
1=

1
Databases I

Call duration 4 k= ;D

")

By default, the graph shows invocation counts on a logarithmic scale. This is ideal for identifying
outliers with a low relative frequency. To get a feeling for the real numbers, it may be useful to
switch to a linear axis in the view settings.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can add it
as an exceptional method in the context menu. The same context menu action is also available
in the call tree view.

168

Thread status: |mmn All states

Method Total Time Inv. Avg. Time Median Time Min. Time Man. Time std. Dev. @) Outiier ... v @
bezier BezierAnimsD. .. 799 ms 441 1,813 ps Ops Ops 200 ms 18,950 ps 200072 &
e — e — — T I T N L N Y T
bemer.BazeI@ Add As Exceptional Method I 1ps Ops Ops 4,514 s 62 s 4514
bezier Bezie _ 3,637 ps 1,900 ps 542 ps 202ms 19,056 ps 105.36
bezier.Bezig = Show Source F4 136 s 125ps 47 ps 9,394ps 44 ps 74.15
bezier Bezig Show Bytecode 8us 2ps 2ps 56 ps 8pus 27
bezier Bezie lps Ops Ops 18 ps 1lps 19
Eerier.Bezie Soit method statistics g 10ps 4ps 4ps S8ps 10ps 13.75
ezier .Bezig . 30ps 13ps 13ps 9 s 30ps 6.62
bezier Bezid 4 Find CleF | g5 3ps 35 145 s 3ps 53,
Clsey & Export View Ctrl<R Y@
Td View Settings Crl+T | T T T I T T T T T T T T T |
| g 100 ms 200

When you register a method for exceptional method recording, a few of the slowest invocations
will be retained separately in the call tree. The other invocations will be merged into a single
method node as usual. The number of separately retained invocations can be configured in the
profiling settings, by default it is set to 5.

When discriminating slow method invocations, a certain thread state has to be used for the time
measurement. This cannot be the thread status selection in the CPU views, because that is just
adisplay option and not a recording option. By default, the wall clock time is used, but a different
thread status can be configured in the profiling settings.

@ Profiling Settings X

Method Call Recording CPUPTUﬁ"”Q Probes & JEE Memory Profiing Thread Profiing Miscellaneous

Auto-Tuning For Instrumentation

Enable auto-tuning)
A method is an overhead hot spot and will be suggested for inclusion into the list of ignored methods, if both
of the following conditions are true:

1, The total time of the method is more than 1015 per mile of the entire total time

2. The average time of the methad is less than 1005 ps

Auto-tuning is only performed if the methed call recording type is set to "Instrumentation™ on the "Methed call
recording” tab.

Time Settings

CPU time measurement: (@) Elapsed time Q
() Estimated CPU time ()

Exceptional Method Run Recording
Maximum number of separately recorded method runs: sk @

Time type for determining exceptional method runs: X0 All states

Call Tree Splitting

Maximum number of splits: 12815 0

General Settings Cancel

In the session settings, you can remove exceptional methods or add new ones without the context
of the call tree or the method statistics view. Also, the exceptional method configuration provides
the option to add exceptional method definitions for well known systems, like the AWT and
JavaFX event dispatch mechanisms where exceptionally long-running events are a major problem.

169

@ Session Settings

Application
Settings

v

Filter
Settings

2

Profiling
Settings

Triggers
Settings

E |

Datsbase
Settings

-

General Settings

Define Filters Exceptional methads 1gnored methods Split methods

This list contains methods whose exceptional invocations are split in the
! «call tree, Exceptional invocations are those where the total time spentin the
method is much more time than the median time for that method.

‘fou can find methods with pronounced exceptional invocations in the method
statistics view and add them from there,

Exceptional invocations are only recorded if the method call recording type is set
to Instrumentation.

(@) bezier BezierAnim $Demo. step(int, int) E‘

Search in Cenfigured Class Path
Search in Other JAR or Class Files
Search in Profiled Classes

Enter Manually (Advanced)

I Common Exceptional Methods >|

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

. Telemetries

'l:l' Live memaory =t
b Heap Walker
I CPU views

Call Tree

Thread status:
-

Hot Spots

Call Graph

Method Statistics
Complexity Analysis
Call Tracer

JavaScript XHR

Thread selection: . All thread groups ~

Aggregation level: @ Methods

View mode: = Tree

o All states ~

W 50.5% - 9,134 ms - Linv. bezier. BezierAnim$§Demo.run

W 49, 5% - 8,955 ms - 1inv. java.awt.EventDispatchThread.run
E—}-@l 14,8% - 2,676 ms - 785 inv, bezier,BezierAnimSDemo.paint
14.4% - 796 ms - 785 inv. bezier.BezierAnimSDemo. drawDel
1 2.2% - 406 ms - 779 inv. bezier.Bezier Anim$Demo.step [m:
| 2.1% - 380 ms - 785 inv. java.awt.Graphics. drawlmage
. 1% - 200 ms - 1 inv. bezier.BezierAnimsDemo.step [exceptional run
() 1.1% - 200 ms - linv. bezier BezierAnim$Demo.block
() 0.0% - 7ps - 12inv, bezier.BezierAnim$Demo. animate
Y 1,1% - 199 ms - 1inv. bezier.BezierAnim$Demo. step [
Y 1.1% - 199 ms - 1inv. bezier.BezierAnim$Demo. step
Y 1.1% - 199 ms - 1inv. bezier BezierAnim$Demo. step
Y 1,1% - 199 ms - 1inv. bezier.BezierAnimsDemo,step []
0,5% - 83,719 ps - 785 inv. bezier.BezierAnimSDemo. creabeGraphlcsZD

0,0% - 999 ps - 785 inv, java.awt.Graphics2D, dispose
@ 0.0% - 6,417 ps - 784 inv. bezier BezierAnim$Demo$1.run

Threads

=

Call Tree View Filters

The split method nodes have modified icons and show additional text:

* @ [exceptional run]

Such a node contains an exceptionally slow method run. By definition, it will have an invocation
count of one. If many other method runs are slower later on, this node may disappear and
be added to the "merged exceptional runs" node depending on the configured maximum

number of separately recorded method runs.

* @ [merged exceptional runs]

Method invocations that do not qualify as exceptionally slow are merged into this node. For

any call stack, there can only be one such node per exceptional method.

* @ [current exceptional run]

170

If an invocation was in progress while the call tree view was transmitted to the JProfiler GUI,
it was not yet known whether the invocation was exceptionally slow or not. The "current
exceptional run" shows the separately maintained tree for the current invocation. After the
invocation completes, it will either be maintained as a separate "exceptional run" node or be
merged into the "merged exceptional runs" node.

Like for call tree splitting by probes [p. 91] and split methods [p. 159], an exceptional method
node has a Merge Splitting Level action in the context menu that lets you merge and unmerge all
invocations on the fly.

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: | @m0 All states | View mode: = Tree w

[F- () m—._50.5% - 11,914 ms - 1inv. bezier BezierAnim$Demo.run
[=-1,) W 49,5%; - 11,687 ms - 1inv. java.awt.EventDispatchThread.run
|3 @l 15.4% - 3,624 ms - 1,008 inv. bezierBezierAnimSDemo, paint
PR c‘ " d exceptional runs]

Show Call Graph
Add Method Trigger
A Add As Exceptional Method

Split Method with a Script i
Intercept Method With Script Probe

Unmerge splitting level Ctrl+Alt+M I
Rernove Selected Sub-Tree Delete

Restore Removed Sub-Trees Ctrl+Alt+S

Add Filter From Selection >

@ Show Tree Legend

171

C.2 Complexity Analysis

The complexity analysis view allows you to investigate the algorithmic complexity of selected

methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity " and a
comparative guide to complexities for common algorithms “ are recommended readings.

First, you have to select one or more methods that should be monitored.

@ Configure Complexity Recordings

Configured methods:

M sort.Comparison. executeBubbleSort{int[], int)

Script returning the complexity as an integer: i

(@) sort.Comparison. executeSelectionSort(int[], int)
() sort.Comparison.executelnsertionsort{int[1, int)
@ sort.Comparison, executeQuickSortint[], int)

@ Hep

<>

Cancel

For each method, you can then enter a script whose return value of type | ong is used as the
complexity for the current method call. For example, if one of the method parameters of type
java.util . Col | ectionisnamedi nputs, the script could bei nputs. si ze().

© Edit
Settings Edit Search Code Help

occ|n ¥ kA

Sho
Unda Reda Copy cut Paste Fstory

code. The following parameters are available:

E”N”ll

- com. jprofiler. api.agent. ScriptContext scriptContext

- java.lang. Class<Object> ¢
- sort.Comparison currentObject

-int]] intArray
-int 1

The expected return type is long

Script:

®» B

Find Replace

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of regular Java

1 hnmrray .length

concel

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 23] . After recording has been stopped, a graph with the results is displayed plotting
the complexities on the x-axis against the execution times on the y-axis. To reduce memory
requirements, JProfiler can combine different complexities and execution times into common
buckets. The drop-down at the top allows you to switch between the different configured methods.

M https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

) http://bigocheatsheet.com/

172

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
http://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the amount of
measurements in it. If all measurements are distinct, you will see a regular scatter chart. In the
other extreme, if all method invocations have the same complexity and execution time, you will
see a single large circle.

Complexity recording: @ sort, Comparison.executeBubbleSort{int[1, int) w
Telemetries
Curve fits: Quadratic (R°=0.222) [best fit] ~
'!:l Live memary
’ 30
]
"ﬁ Heap Walker
251

I CPU views
20

Call Tree

Hot Spots

Time in ms
',

Call Graph

10
Method Statistics

o

Complexity Analysis s

5 v
Call Tracer

il
JavaScript XHR 0 gttt 1 1 ! 1 1
1] 1,000 Z,000 3,000 4,000 5,000
—
Threads Complexity

=

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler tries
curve fits from several common complexities and initially shows you the best fit. The drop-down
for the curve fits allows you to show other curve fit models as well. The R’ value embedded in
the description of the curve fit shows you how good the fit is. The models in the drop-down are
sorted in descending order with respect to R? so the best model is always the first item.

Complexity recording: | {Z) sort.Comparison.executeBubbleSort{int]], int) e

Curve fits:

Time in ms

Note that R* can be negative, because it is just a notation and not really the square of anything.
Negative values indicate a fit that is worse than a fit with a constant line. The constant line fit
always has an R’ value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties" option
in the export dialog. For automated analysis in a quality assurance environment, the command
line export [p. 200] supports the properties format as well.

173

C.3 Call Tracer

Method call recording in the call tree cumulates calls with the same call stacks. Keeping precise
chronological information is usually not feasible because the memory requirements are huge
and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire chronological
sequence. For example, you may want to analyze the precise interlacing of method calls of several
cooperating threads. A debugger cannot step through such a use case. Alternatively, you would
like to analyze a series of method invocations, but be able to go back and forth and not just see
them once like in the debugger. JProfiler provides this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer view, with
a trigger [p. 23] or with the profiling API [p. 108] . To avoid problems with excessive memory
consumption, a cap is set on the maximum number of collected call traces. That cap is configurable
in the view settings. The rate of collected traces heavily depends on your filter settings.

Call tracing only works when the method call recording type is set to instrumentation. Sampling
does not keep track of single method calls, so it is technically not possible to collect call traces
with sampling. Calls into compact-filtered classes are recorded in the call tracer, just like in the
call tree. If you just want to focus on your own classes, you can exclude these calls in the view
settings.

@ Call Tracer View Settings X

Trace Recording

Maximum number of recorded call traces: 100,000 -

[Record calls into unprofiled dasses)

Time Display
(@) Relative to first trace
(O Relative to previous node

() Relative to previous node of the same type

Method Display
Show signature

[[] Show class names in method nodes

The traced method calls are displayed in a tree with three levels that make it easier to skip related

calls by collapsing them. The three groups are = threads, © packages and @ classes. Each time
the current value for any of these groups changes, a new grouping node is created.

At the lowest level there are @ method entry and @ method exit nodes. Below the table with
the call traces, the stack trace of the currently selected method trace is shown. If call traces into
other methods have been recorded from the current method or if another thread interrupts the
current method, the entry and exit nodes for the that method will not be adjacent. You can
navigate on the method level only by using the Previous Method and Next Method actions.

174

& 1 - p ¥ p—
I ° I IERAC I o
O HZ 2 8% O 4% @ m R (
Start Save Sestion Start Stop Start Add Wiew Record Hide Show Previous P
Canter TP Srapshor Setings | Recordings Recordngs Tracking | "9 pockmark | EP™ cewings | TP Traces | Selected Lidden | Methed M
Session Prafiling Viewr specfic
-
15672 traces, 0 hidden elements
. Telemetries —
- [Thread-2 (8 traces) +0ps A~
£ bezier (8 traces) +0ps
-l:l Live memory El o bezier BezierAnim$Demo (2 traces) +0ps
- @ rung +0ps
i @ scheduleBlockingActivity() +0ps
ﬁ Heap Walker El O bezier BezierAnim$Demos1 (1 trace) +79ps
H Q <init>{bezier,Bezier AnimsDemo) +79ps
=8 o bezier.BezierAnim$Demo (5 traces) + 206 ps
CPU views = Py
i scheduleBlockingActivity() + 206 ps|
@ scheduleRepaint{) B, Hide Selected Delete + 214 ps
Call Tree (@ scheduleRepaint() B Show Hidden Ctrl+ Alt+S +278 ps
Hot Spots (R block{boalezn) _ + 287 ps
Q block{boolean) = Show Source F4 + 289 ps
Call Graph =3 : AWT-EventQueus-0 i Show Bytecode + 538 ps
) -0 Thread-2 +9ms622us ¥
Method Statistics bezier.BezierAniméDema.run()) Skip To Previous Method Trace Alt+Up
T @ skip To Mext Method Trace Alt+Down
Call Tracer 22 Find Ctrl+F
JavaScript XHR T Export View Ctrl+R
B reass View Settings Ctel+T
-
+ @ 1active recording VM #1 00:12 @ Profiing

The timing that is displayed on the traces and all grouping nodes refers to the first trace by
default, but can be changed to show relative times since the previous node. If the previous node
is the parent node, that difference will be zero. Also available is the option to show relative times
with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short time. To
eliminate traces that are of no interest, the call tracer allows you to quickly trim the displayed
data. For example, certain threads might not be relevant or traces in certain packages or classes
might not be interesting. Also, recursive method invocations can occupy a lot of space and you
might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the delete key. All other instances of the
selected nodes and all associated child nodes will be hidden as well. At the top of the view you
can see how many call traces out of all the recorded traces are still shown. To show hidden nodes
again, you can click on the Show Hidden tool bar button.

L) o - . Y JE—
¥R 00
8 8B T CHh Wim m

Start Sto Stant Add Wiew Record Hide Show Previous Mext
cordings Recorfings Tracking | "€ pookmark | TP Gatings | P | Traces ||Selected bidden || Methed Method

Profiling

14958 of 15672 traces, 1 hidden elements

BT Thread-2 {6 traces) +0ps A
bezier (6 traces) +0ps
(- {3 bezier BezierAnimsDemo (1 trace) +0us

175

C.4 JavaScript XHR Origin Tracking

With JavaScript XHR origin tracking, you can split servlet invocations for different stack traces in
the browser during XMLHttpRequest " or Fetch “ requests, so you can better correlate the
activity in the profiled JVM with actions in the browser. in the following, "XHR" designates both
the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome ¥ as the browser and install the JProfiler

- . 4
origin tracker extenS|on().

G Google x

& C [https//www.google.com H

The Chrome extension adds a button with a & JProfiler icon to the tool bar that starts tracking.
When you start tracking, the extension will intercept all XHR calls and report them to a locally
running JProfiler instance. As long as tracking has not been started, JProfiler will show an
information page that tells you how to set up JavaScript XHR origin tracking.

-

I CPU views

Call Tree

JavaScript XHR Origin Tracking

5 I'm,ﬂ'

Jrrofiler can track the JavaScript stack traces of XHR calls from a Chrome browser into the profiled J¥M. When XHR
Hat Spots tracking is active, you get

Call Graph = A tree of JavaScript calls that initiate ¥HR calls into the profiled 1vM
Method Statistics « JavaScript call tree splitting below the URL splitting level

« Full JavaScript stack traces in the call tree
Complexity Analysis

To activate this feature, you have to install the JProfiler Chrome extension and toggle the L] Jprofiler tracking
button in Chrome.,

Call Tracer

S EEITL After you complete these actions, this notice will disappear and the JavaScript XHR call tree will be shown.

Threads

Monitors & locks

(]

1
; Databases
Y

IEE £ Drahar
-

When tracking is activated, the JProfiler extension will ask you to reload the page. This is necessary
for adding instrumentation. If you choose to not reload the page, event detection may not work.

The tracking status is persistent on a per-domain basis. If you restart the browser while tracking
is active and visit the same URL, tracking will automatically be enabled, without the need to
reload the page.

https://xhr.spec.whatwg.org/

)

) https://fetch.spec.whatwg.org/

) http://www.google.com/chrome/
)

https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

176

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

JavaScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in JProfiler, the
JavaScript XHR view will show a cumulated call tree of these calls. If the view remains empty, you
can switch the "Scope" at the top of the view to "All XHR calls" to check if any XHR calls have been
made.

Scope: | XHR calle that were recorded i

3 mplebeOutstand\ngRequEst i 5.j5:43202: 10)
http [Nocalhost:3082 s fap;

SEUDE Sapply (hitp
= Scope Sdigest

"—.', http:fﬂocalhost 3
= ﬂ_‘ prncessQueue
= iE servErREquEs
=5 m sendreq (h

0 http:/focalhost: 8082fis/app-6f880a36.j5:48063: 11 jump to execution site
= htip [Nocalhost: SDSZJJsjapDGfSBDaES js:54520:28

http fflocalhost: SDSZ{Jsfapp-GFBSDa}G js:74205:20

= handIEr http:/floc
Scope Sapply
B Fm Scope. Sdige:
=} Fm Scope. Seval
= i htip:fﬂﬂca\hnst:ﬂDB Japp

=& prD(EssQuEuE
= serverRequ
= m sendReq (h

0 http: fﬂocalhost 808 2js/app-6f880a36.j5:48063: 11 jump to execution site

~/8, mouseup on <a> [ng-mouseup: ‘entryClicked(entry, Sevent)]

k dick on <button> [ng-dick: sEﬂJngsSErvl[E semngs rEad\ngMDdE =
& XMLHttpRequest.requestioaded (h ocalhost: 3082 fjs/app-6i

Javascript & call stack nodes include information on the source file and the line number. The

function where the XHR call is made has a @ special icon and and adjacent hyperlink in case the
XHR call was handled by the profiled JVM. The hyperlink will take you to the Javascript splitting
node in the call tree view [p. 46] where you can see the server side call tree that was responsible
for handling requests of this type.

At the top of the tree you find '# browser event nodes that show event name and element name
together with important attributes that help you pin down the source of the event. Not all requests
have an associated event.

The extension is aware of several popular JavaScript frameworks and walks the ancestor hierarchy
between the target node of an event up to the node where the event listener is located, looking
for attributes that are suitable for display and splitting the call tree. Failing to find
framework-specific attributes, it stops at an i d attribute. In the absence of an ID, it searches for
"control elements" like a, but t on or i nput . All failing, the element where the event listener is
registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and you
may prefer a different call tree splitting. For example, some frameworks assign automatic IDs,
but it would be more readable to group all elements together with a semantic description of the
action. To achieve a different call tree splitting, add the HTML attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event listener.
The text in that attribute will be used for splitting and other attributes will be ignored.

Call tree splitting

In the call tree view, XHR caIIs will split the call tree for each separate combination of browser

event and call stack. The & splitting nodes show information about the browser event. If no
eventisin progress, likeina caII toset Ti meout (), the last few stack frames are displayed inline.

177

Thread selection: . All thread groups ~ | Aggregation level: @ Methods ~

Thread status: | = Runnable ~ | View mode:

=X)_ 59.6% - 938 ms - 5inv. org.edipse.jetty.util. thread. QueuedThreadPool $3.run
W 45, 2% - 712 ms - 3inv. HTTP: jrest/category/get
W 12.7% - 200 me - 3inv, HTTP: frest/categaory/entries
1 click t gl C

inw. com.commafeed, CommaFeedApplications4. doFilter
15.5% - 87,277 ps - 1inv. io.dropwizard.servlets. CacheBustingFilter. doFilter
0.0% - 2 ps - 1inv. javax.servlet.http HttpServletRequest.getRequestURT
0.0% - 1 ps - 1inv. java.lang. 5tring. contains
14, 7% - 74,036 ps - 1inv. http:/flocalhost: 8082 js/app-6f880536.j5:48063: 11 — sendReq — serverRequest — processQueue «— htip:/flocalhost:
12,5% - 39,281 ps - Linv, http:/flocalhost:8082is/app-6f880a36.js:48063: 11 « sendReq +— serverRequest «— processQueue «— http:/Jocalhost:
=@ 0.8% - 12,143 s - Linv. HTTP: frestfentry/mark

=g 0.8% - 12,129 ps - 1inv, mouseup on <a> [ng-mouseup: 'entryClicked(entry, Sevent)] show more
=) 0.8% - 12,122 ps - 1inv. com.commafeed.CommaFeedApplication$4.doFilter

[0.8% - 12,112 ps - 1inv. io.dropwizard servlets, CacheBustingFilter . doFilter
0.0% - 2 ps - Linv, javax servlet.http HttpServietRequest.getRequestURT
0.0% - 1ps - Linv, java.lang.String.contains
0.6% - 9,935 ps - 1inv, HTTP: frestfuser fsettings
) . 40.4% - 635 ms - 5inv. java.util.concurrent. ThreadPoolExecutor $Worker.run

< >

Q- Call Tree View Filters ~ | @

The "show more" hyperlink on these nodes opens the same detail dialog that is opened by the
View->Show Node Details action. For JavaScript splitting nodes, the detail dialog does not show
the text of the node, but the entire browser call stack. To inspect the call stack of other JavaScript
splitting nodes, leave the non-modal detail dialog open and click on those nodes, the detail dialog
will update its contents automatically.

@) Details for Selected Element X

http://localhost 8082/ s/app—E£5E0a3€.]
sendReq (h

serverRequest

processQueus E
http://localhost:8082/js/app-6£280a36.95:51502:27
Scope.3$eval

Scope.sdigest
Scope.$apply
HTMLButtonElement <anonymous:s P/

HTMLButtonElement.jluery.event.dispatch
elemData.handle (http://loca
HTMLButtonElement <anonymouss (<a

click on <button> [ng-click: 'settingsService.settings.readinglode = 'all'']

This Invecation Sub-Tree) All Invocations §)

Total 87,291ps 87,291 s 57,213 s
Self Tps Tps 18 ps
Calls 1 i 2

This dialeg is non-modal

178

D Heap Walker Features In Detail

D.1 HPROF Heap Snapshots

The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF format,
The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain garbage
collector roots, so JProfiler simulates classes as roots. Finding class loader memory leaks may
be difficult with a PHD file.

Native heap snapshots can be saved without the profiling agent and incur a lower overhead than
JProfiler heap snapshots, because they are saved without the constraints of a general purpose
API. On the flip side, the native heap snapshots support less functionality than JProfiler heap
snapshots. For example, allocation recording information is not available, so you cannot see
where objects have been allocated. HPROF and PHD snapshots can be opened in JProfiler
withSession->0pen Snapshot, just like you would open a JProfiler snapshot. Only the heap walker
will be available, all other sections will be grayed out.

In a live session, you can create and open an HPROF heap snapshot by invoking Profiling->Save
HPROF Heap Snapshot. For offline profiling [p. 108], there is a "Create an HPROF heap dump"
trigger action. It is usually used with the "Out of memory exception" trigger to save an HPROF
snapshot when an Qut Of Menor yEr r or is thrown.

@ Trigger Wizard - Out of memary exception X
1. Trigger type Configure actions for this trigger

2. Actions

3. Description Configured actions:

4, Group ID 1

5. Finished lT | Create an HPROF heap dump I:F

4 Back Next p Finish Cancel

This corresponds to the VM parameter "’
- XX: +HeapDunmpOnQut OF Menor yEr r or

that is supported by HotSpot JVMs.

An alternative way to extract an HPROF heap dump from a running system is via the command
line tool j map that is part of the JRE. Its invocation syntax

jmap -dunp:live, format=b,file=<fil ename> <Pl D>

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

179

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remember and requires you to use the j ps executable to find out the PID first.
JProfiler ships with an interactive command line executable bi n/j pdunp that is much more
convenient. It lets you select a process, can connect to processes running as a service on Windows,
has no problems with mixed 32-bit/64-bit]VMs and auto-numbers HPROF snapshot files. Execute
it with the - hel p option to get more information.

Taking HPROF heap snapshots without loading the profiling agent is also supported in the JProfiler
GUI. When attaching to a process, locally or remotely, you always have the possibility to just take
an HPROF heap snapshot.

© JProfiler Start Center >

Start Center

Open Session Quick Attach New Session Open Snapshots

(®) On this computer () On another computer

Displayed HotSpot IVMs: All detected JZVMs + Show Services
D # Process Name
bezier. Bezier Anim block A
11132 org.gradle. launcher, daemon.bootstrap. GradleDaemon 4, 5-rc-1
11560 org.jetbrains.jps.cmdline Launcher C: fUsers fingo/AppData/LocalfletBrains/Toolbox /apps. ..
12060 org.gradle. launcher. daemon.bootstrap. GradleDaemon 4.5
12492 warker,org.gradle.process.internal worker, GradleWorkerMain 'Gradle Test Executor 1'
13720 org.jetbrains.idea. maven.server,RemoteMavenServer
14104 bezier. Bezier Anim
14200 <unknown
14960 org.jetbrains.kotiin, daemon. KotinCompileDaemon —daemon-runFilesPath C:\Userslingol...
G380 org.jetbrains. kotlin. daemon. KotlinCompileDaemon —daemon-runFilesPath C:\lserslingo?. ..
8776 org.gradle, wrapper . GradieWrapperMain —daemon screenshots
v
Legend: Profiing agent loaded IProfiler GUI connected Offline mode
Filter

€| HeapDump Only Close

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an Qut Of Menor yEr r or, the thread dump may be able to convey what part of
the application was active at the time of the error. The thread that triggered the error is marked
with a special icon.

. All thread groups
’ Telemetries main
Moritor Ctrl-Break
. mainThread
‘i:l‘ Live memory system
Finalizer
e Reference Handler
b EENE = Signal Dispatcher
Current Object Set
Thread Dump
CPU views
I java.lang. OutOfMemoryError. <init=() (ine: 48)
java.util. ArrayList. <init=(nt) (line: 152)
Threads misc, O0OMTest.main{java.lang.String[1) (ine: 41)
e
{? Moritors & locks
; Databases
PA

IEE & Drahar
-

180

D.2 Minimizing Overhead In The Heap Walker

For small heaps, taking a heap snapshot takes a couple of seconds, but for very large heaps, this
can be a lengthy process. Insufficient free physical memory can make the calculations a lot
slower. For example, if the JVM has a 50 GB heap and you are analyzing the heap dump on your
local machine with only 5 GB of free physical memory, JProfiler cannot hold certain indices in
memory and the processing time increases disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended to
increase the - Xnx value in the bi n/ j profil er. vnopti ons file unless you have experienced
an Qut Of Menor yEr r or and JProfiler has instructed you to make such a modification. Native
memory will be used automatically if it is available. After the analysis has completed and the
internal database has been built, the native memory will be released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump. When
you save a snapshot, the analysis is saved to a directory with the suffix . anal ysi s next to the
snapshot file. When you open the snapshot file, the heap walker will be available very quickly.
If you delete the . anal ysi s directory, the calculation will be performed again when the snapshot
is opened, so if you send the snapshot to somebody else, you don't have to send the analysis
directory along with it.

If you want to save memory on disk or if the generated . anal ysi s directories are inconvenient,
you can disable their creation in the general settings.

@ General Settings X

IDK and JREs Session Defaults Snapshots IDE Integrations Updates Miscellaneous

Heap Dump Analysis

The heap walker needs to analyze the heap dump before it can be shown, Depending on the heap size, this
analysis can take a long time. JProfiler can save the results of the analysis, so that snapshots can be opened
much faster.

If the analysis is missing, JProfiler will simply perform it again when you open the snapshot.

YYou can also use the jpanalyze command line tool to pre-analyze snapshots were taken automatically in offine
mode,

cance

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 108] do not
have an . anal ysi s directory next to them, because the analysis is performed by the JProfiler
Ul and not by the profiling agent. If you do not want to wait for the calculation when opening
such snapshots, the j panal yze command line executable can be used to pre-analyze [p. 200]
snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot without
an analysis, and its directory is not writable, a temporary location is used for the analysis. The
calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too long
and you don't need the retained sizes, you can disable their calculation in the overhead options
of the heap walker options dialog. In addition to retained sizes, the "Biggest objects" view will
not be available either in that case. Not recording primitive data makes the heap snapshot

181

smaller, but you will not be able to see them in the reference views. The same options are
presented when opening snapshots if you choose Customize analysis in the file chooser dialog.

@ Heap Snapshot Options x

Heap Dump Options Overhead Options

Record primitive data)

o

182

D.3 Filters And Live Interactions

When looking for objects of interest in the heap walker, you often arrive at an object set that has
too many instances of the same class in it. To further trim the object set according to your
particular focus, the selection criteria could then involve their properties or references. For
example, you may be interested in HTTP session objects that contain a particular attribute. In
the merged outgoing reference view of the heap walker you can perform selection steps that
involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive fields.

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 3,004 instances of java.uti.HashMap$Node

2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references w Uge ... w =5 Show In Graph @ L) @

Object By restricting the selected value Shallow Size

Allocation Time {h:m:s)
5 O [EYTIIET T Vitha code sippet -
i - hash = 1123014945
Ehkey) java lang.StringBuffer [
count

r-vala A

When you select a top-level object, a primitive value or a reference in the outgoing references
view, the Apply Filter->By Restricting The Selected Value action becomes enabled. Depending on
the selection, the filter value dialog offers different options. Whatever options you configure,
you always implicitly add the constraint that objects in the new object set must have outgoing

reference chains like the selected one. Filters always work on the top-level objects by restricting
the current set of objects into a possibly smaller set.

@ Classes Wl Allocations .. Biggest Objects x References O Time @ Inspections n(: Gk

Current object set: 3,004 instances of java.uti.HashMap$Node

2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Qutgoing references w Use ... v Apply filter ... + =g Show In Graph E:E;}

5| |0
Object Retained Size + Shallow Size Allocation Time (h:m:s)
Bli java.util, HashMap$Mode (0x542c) 52,848 bytes 32 bytes nfa A
hash = 1123014345
i E-key @ java.lang.StringBuffer ([
@ Filter Value x

value () javax.swing.UIManager sLAFState (05 ? Select all objects from the current object set for which the following is true:
¥ java.util HashMap&Mode (0x317)

El- I java.utl.HashMap&hode | o The object has an outgoing reference chain just like the selected one
S ol 1 L e

TS

0 The selected primitive value satisfies the following condition:
Selection step 2 : Class

java,util. HashMapsNode
3,004 instances of java. util,HashMapshode Integer value equals 12345 -

Selection step 1 : All objects after full GC, retaining soft r

cnce
43,544 objects in 1,010 dasses

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For reference
types, you can ask JProfiler to filter non-null values, null values, and values of a selected class.
Filtering by the result of the t oSt ri ng() method is only available in live sessions, except for
java.lang. Stringandjava. | ang. C ass objects where JProfiler can figure this out by itself.

183

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 3,004 instances of ja| @ Filter Value x

2 selection steps, 95 kB shallo:
Y Select all objects from the current object set for which the following is true:

Outgoing references - Use ... w A Q The object has an outgoing reference chain just ke the selected one
Object o The selected reference satisfies the following condition:
=] G java.util, HashMap$Mode (0x54ec) t

+-- hash = 1123014945

() The reference is not null

() The reference is null

H ul
-value () javax.swing.UIManager sLAFState (0x5
P java.util. HashMap&iode (
- java.uti HashMapéMode |
i

LA R e

(®) The instance is of the type:

java.lang.5tring

Also match derived dasses

FIE

Selection step 2 : Class
java.util. HashMapshode

3,004 instances of java.util.HashMapshiode String value | contins - Ignore case

() The result of the toString() method satisfies the condition:

Selection step 1 : All objects after full GC, retaining soft r
43,544 objects in 1,010 dasses

OK Cancel

The most powerful filter type is the code filter snippet. In the script editor, you have access to
the object or reference and can write an expression or script whose boolean return value decides
whether an instance should be retained in the current object set or not.

© Edit X
Settings Edit Search Code Help

o | [s :
L = | @ |
Unde Redo | Copy Cut Ppate SPOW Find Replace | T2 Help
History Carnpile

Y Select all objects from the current object set for which the following is true:
o The object has an outgoing reference chain just like the selected one

o The selected reference passes the following filter script:

Flease enter an expression (no trailing semicolon) or a script (ends with & return statement) that consists of regular Java
code, The following parameters are available:

E“‘”ql'

- com.jprofiler. api.agent.ScriptContext scriptContext
- sun.awt.image.PixelConverter pixelConverter

The expected return type iz boolean

Filter script:

J.bixelConverter‘getAlpha}:’ask() & 255 == 255

Conce

Of course this feature can only work for live sessions, because JProfiler needs access to the live
objects. Another consideration is that an object may have been garbage collected since the heap
snapshot was taken. In that case, such an object would not be included in the new object set
when a code snippet filter is executed.

Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes the t oSt ri ng() method on all
objects that are currently visible in the view and shows them directly in the reference nodes. The
nodes can become very long and the text may be cut off. Using the Show Node Details action
from the context menu helps you to see the entire text.

184

Q Jasses Wl Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 7 instances of sun.font.FontFamily

2 selection steps, 336 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references w Uge ... w Apply filter ... = =5 Show In Graph @ @

Object Retained Size + Shallow Size Allocation Time (h:m:s)
.FontFamily (0x5b40) ["Font fami Space 48 bytes 48 bytes

- logicalFont = trug
- familyRank = 2
familyWidth = 5
71-bold) sun.font. CompasiteFont (0

b47) [Compasite Font: Famil

r- bolditalic :) sun. font. CompositeFont (0:5b53) [™= Composite Font: © Details for Selected Element x
= familyName -:)Java.lang‘smng 5b41) [Monospaced”] - -
5. italic :, sun. fant, CompositeFon 5bad) [*** Composite Font: Fami sun, font.FontFamily (0x5b40) [Font family: Monospaced plain="% ~
-4 o : oo pe IR Composite Fant: Family =Monospaced Name=Maonaspaced.plain style =0 4
Slot[0]=** TrueType Font: Family=Courier New Mame=Courier New E
Selection step 2 : Class style=0 fileName =C: WINDOWSFontsCOUR. TTF B
Slot[1]=**TrueType Font: Family=Wingdings Name=Wingdings
.font.FontFamil
sun.font.Fontramiy style =0 filName =C:\WINDOWSFontsWINGDING. TTF
7instances of sun.font. FontFamily Slot[2] == TrueType Font: Family=Symbol Name =Symbol style=0
. fileName =C: WINDOWSFontsSYMBOL. TTF A

Selection step 1 : All objects after full GC, retaining soft references
43,544 objects in 1,010 dasses

This diglog is non-modal

A more general method of obtaining information from an object than calling the t oSt ri ng()
method is to run an arbitrary script that returns a string. The Run Script action next to the Show
toString() Values action allows you to do that when a top-level object or a reference is selected.
The result of the script execution is displayed in a separate dialog.

@ Edit X
Settings Edit Search Code Help

oSN PR EZ| & ¥ O

Show
History

Run a script with the selected instance as a parameter,
The returned string will be displayed in a dislog.

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of regular Java
code. The following parameters are available:

- Test
Undo Redo Copy Cut Pame Find Replace | oS0 | Help

JAVA
- - com. jprofiler. api.agent. ScriptContext scriptContext
- java.lang.Class<0Object> ¢
The expected return type is java.lang.String
Script:

1 |ur.1: ort java.util.stream.Collectors;

2 Arrays.stream(c.getDeclaredMethods())
L3 .map{m -> m.toString())

4 .collect (Collectors.joining ("\n"))

Cancel

185

D.4 Finding Memory Leaks

Distinguishing regular memory usage from a memory leak is often not quite simple. However,
both excessive memory usage and memory leaks have the same symptoms and so they can be
analyzed in the same way. The analysis proceeds in two steps: Locating suspicious objects and
finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory over
time. Detecting the growth of memory usage is best done with the VM telemetries and the
differencing functionality [p. 60] in the "All objects" and the "Recorded objects" views. With these
views you can determine if you have a problem and how severe it is. Sometimes, the difference
column in the instance tables already gives you an idea what the problem is.

Memary pool: | Heap ~
' Telemetries
4

Overview &

Memory 300 MB

Recorded Objects
Recorded Throughput
GC Activity

200 MB —
Classes
Threads

CPU Load

Custom Telemetries 100 MB ~

'l:l Live memory
|

b Heap Walker

(] = Free size: 115.2ME mem Used size: 107.5ME wem Committed size: 222.7MB wem Maximum: = » p ;3

-

Any deeper analysis of a memory leak requires the functionality in the heap walker. To investigate
a memory leak around a particular use case in detail, the "Mark heap" functionality [p. 69] is
best suited. It allows you to identify new objects that have remained on the heap since a particular
previous point in time. For these objects, you have to check whether they are still legitimately
on the heap or if a faulty reference keeps them alive even though the object serves no further
purpose.

@ HZ2 £ & % S % L EH O BA00

Start Save Session Start Stop Start Add Wime Take Ma e
Conter %P Srapshor Setings | Recordings Recordings Tracking | "9 pockmare | CP™ cemings | TP Snapshor| Heap Back Forward

Session Profiling

' Telemetries o No snapshot has been taken.
P
For a maximum of features:
Live memary
'I:.' Press ﬂ to take a JProfiler heap snapshot
A . L. Tha eranchatic dienlauad in thic frama and eauad traathar with neafline infarmation fram nthar

Another way to isolate a set of objects that you are interested in is through allocation recording.
When taking a heap snapshot, you have the option to show all recorded objects. However, you
may not want to limit allocation recording to just a particular use case. Also, allocation recording
has a high overhead, so the Mark Heap action will have a comparatively much smaller impact.
Finally, the heap walker lets you select old and new objects at any selection step with the Use
new and Use old hyperlinks in the header if you have marked the heap.

186

© Casses Il Allocations ™ Biggest Objects S References (©) Time 3} Inspections =ZGr

Current object set: 68,331 objects in 1,012 classes
1 selection step, 4,563 kB shallow size
24,942 new instances {36.5%) since the last heap dump Use old

O Classes ~ Use.. = (9 Group By Class Loaders Calculate estimated retained sizes
Name Instance Count = Size

char(] I ¢, 71 508 HE A
java lang.String — ke 208 kB
java,util, HashMapShode [iR 242kB
ava lang.Long I 5,50 141kB
bvtel'1 I .72 264 kB

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in the
profiled application. In that case, you don't have to examine new objects, but simply analyze
what objects are most important.

Memory leaks can have a very slow rate and may not become dominant for a long time. Profiling
such a memory leak until it becomes visible may not not practicable. With the built-in facility in
the JVM to automatically save an HPROF snapshot [p. 179] when an Qut O Menor yEr r or isthrown,
you can get a snapshot where the memory leak is more important than the regular memory
consumption. In fact, it's a good idea to always add

- XX: +HeapDunpOnQut O Menor yEr r or

to the VM parameters or production systems so you have a way to analyze memory leaks that
may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects" view of the heap walker
will contain the memory that was retained by mistake. While the biggest objects themselves may
be legitimate objects, opening their dominator trees will lead to the leaked objects. In simple
situations, there is a single object that will contain most of the heap. For example, if a map is
used to cache objects and that cache is never cleared, then the map will show up in the dominator
tree of the biggest object.

D) Classes Wl Alocations ™ Biggest Objects] References (&) Time 43 Inspections =2Gh

Current object set: 46,442 objects in 1,004 classes
1 selection step, 3,241 kB shallow size

Mo grouping w || = Tree ~ Use .. w K: Show In Graph @ ||

Object Retained Size =
I 530 kB (15 %) A

1 bezier BezierAnim (0x2=60

=R 529 kB (99.9%) leakMap = java.util.HashMap

- — 520 k5 (23,9%) table (o) java.util.HashMapshode]]
X, Another 1518 instances with a total retained size of 513 kB and a maximum single retained size of 608 bytes

a{, Another 6 instances with a total retsined size of 376 bytes and a maximum single retained size of 144 bytes
- bezier BezierAnimsDemo (0x4203) I - kE (11 %%)
I,J com.jprofiler.agent.d. 2 I 52,3365 bytes (2 %)
I- sun.awt AppContext (0x2c2d) I 55,564 bytes (1 %)

- sun.java2d.loops. GraphicsPrimitiveMgr (0x4c2) Il 41,840 bytes (1 %)
I,J sun.misc.FDBigInteger (0902 Il 37,712 bytes (1 %)
- sun.awt ExtendedeyCodes (0x435) Il 30,336 bytes (0 5%)
- java.lang.invoke.MethodHandleImpl$Lazy (0x477) Il 30,296 bytes {0 5%)
I:‘j sun.security.provider.Sun (0x6bb7) W 26,336 bytes (0 %)
~IE0 com.jprofiler.agent. triggers. TriggerLog (0x11) M 25,216 bytes (0 %)

- java.io.PrintStream (0 W 25,056 bytes (0 %)

I:‘j java.io.PrintStream (0x792h W 25,056 bytes (0 %)
(- E lann O i e 7a) - & hutar (0 BLY

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced", means that
there is at least one chain of references from a garbage collector root to the object. "Garbage

187

collector" roots (in short GC roots) are special references in the JVM that the garbage collector
knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions in the
"Incoming references" view or in the heap walker graph. Such reference chains may by very long
in practice, so they can generally be interpreted more easily in the "Incoming references" view.
The references point from the bottom towards the object at the top level. Only the reference
chains that are the result of the search are expanded, other references on the same levels are
not visible until a node is closed and opened again or the Show All Incoming References action in
the context menu is invoked.

D) Classes Wl Alocations ™ Biggest Objects] References (&) Time 3% Inspections =2Gh

Current object set: 1,689 instances of java.awt.geom.GeneralPath
2 selection steps, 54 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references w Uge ... w w5 Show In Graph @' L] I \t Show Paths To GC Root

Object Retsined Size « Shallow Size Allocation Time (h:m:s)

= O value of java.util.HashMap$hode (0
=] ° element of java.util.HashMap$hiode
=3 O table of java.util HashMap (0
= O leakMap of bezier.Bezier Anim (0x2250)
=- O target of sun.awt.windows. WPanE\PEEr {
Oi INI global reference
E} O this$0 of bezier BezierAnimSDemao (0542
. Oi java stack of Thread-2 in bezier. B
E| 0 wvalsdemo of bezier.BezierAnims1 (0x58
=1 windowListener of java.zwt.Frame (d d
- (D static currentFocusCycleRoot nf dass Ja\r

(Ox2cfs)
‘acusManager ((xb)

O java.awt.geom.GeneralPath | 248 bytes 32 bytes nfa
- java.awt.geom.GenerzlPath | 248 bytes 32 bytes 0:0:14.3
- java.awt.geom.GeneralPath | 243 bytes 32 bytes 0:0:14.3

O Java aAt geom.GeneralPath | 248 bytes 32 bytes 0:0:06, 1

JDath fruazie) 248 huta 9 hasts, ata ¥

To get an explanation for types of GC roots and other terms that are used in the reference nodes,
use the tree legend.

D) Classes Wl Alocations ™ Biggest Objects] References (&) Time 43 Inspections =2Gh

Current object set: 1,689 instances of java.awt.geom.GeneralPath
2 selection steps, 54 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references e Use... w =3 Show In Graph @ L] i Show Paths To GC Root

Object Retsined Size « Shallow Size Allocation Time (h:m:s)
- java.awt.geom. GeneralPath (1x:4307) 248 bytes 32 bytes 0:0:10.2 A
=S O value of java.util.HashMap$Mode (0
: =] () element of java.uti.HashMapshode[] (
BO table of java.utll, HashMap (0x:
1% leakMan of hezier Rezier Anim (1 7eA0)

When you select nodes in the tree, the non-modal tree legend highlights all used icons and terms
in the selected node. Clicking on a row in the dialog will show an explanation at the bottom.

188

@ TreeLegend x

= Node Icons ~
9 Instance in current object set
@ Class objectin current object set
Q Incoming reference

Reference cyde

O Incoming reference in path to GC root
<] Class reference
‘t GC root
ég Cutoff node
= Terms And Abbreviations
INI global Global reference from native JNI code
INI local Local reference from native JNI code
array content Reference from an array
class loader Reference from a dlass loader
collection Reference from a Java collection
constant pool Reference from the constant pool of a dass
field Reference from an instance field of an object
instance of dass Reference from an instance to its dass
interface Reference through implementing an interface
java stack Reference from the Java stack
map key Reference from a key in a Java map
map value Reference from a value in a Java map

manitor used The monitor of an object is being used
native stack Reference from the native stack

static field Reference from a static field of a dass

sticky dass Reference from a sticky dass

superclass Reference through inheriting from a dass

thread block Object is used by a blocked thread v
Hormd nbinet Defresnen feamm o theod ahined

An object that is used in an active stack frame cannot be garbage collected. Stack
frames can be active permanently if a method calls never returns.

The thread and the method name of the stack frame are specified.

Thig dialog is non-modal

Important types of garbage collector roots are references from the stack, references created by
native code through JNI and resources like live threads and object monitors that are currently
being used. In addition, the JVM adds in a couple of "sticky" references to keep important systems
in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage collected
together with their classloader when

* no class loaded by that classloader has any live instances
+ the classloader itself is unreferenced except by its classes
+ noneofthej ava. | ang. O ass objects are referenced except in the context of the classloader

o Classes il Allocations .. Biggest Objects x References O Time @ Inspections I<: Gh

Current object set: 134 instances of java.utiL.HashMap$Node

4 selection steps, 4,288 bytes shallow size, Calculste retained and deep sizes Use retained objects

Incoming references v | Use..w w3 showInGraph | 43k |3 | @ . Show Paths To GC Root
Object Retained Size v Shallow Size Allocation Time (h:m:s)
=] O java.util.HashMap&Mode (0x5d05) 5,344 bytes 32 bytes nfa

=2 O element of java.util. HashMap$Node[] (
= 0 table of java.util. HashMap (0x

=] O resonrcecacheofjavax‘smng UlDefaults

= O element of javax.swing.UIDefaults[] (0x37ac)

= 0 tables of javax.swing.UIManagerSLAFSts

[=] O value of java.util. HashMapsNode (0x520a)

=¥ element of java.util.HashMapghode|

=t 0 table of java.util.HashMap (0

E}O table of sun.awt. AppContext (0

=90

sun.awt. AppContext (0x4b3)

T unspedified root
T sticky dass

. (D0 constant of dass com.sun.java. swing. SwingUtilities3 (0:51c)
I 00 constant of dass com.sun.java. swing.plaf. windows. AnimationContraller (0:
_. Oo constant of dass com.sun.java.swing.plaf. windows, WindowsCheckBoxUI |
WY - tant af dace i t AMTKauStraks N 726

In most circumstances, classes are the last step on the path to the GCroot that you are interested
in. Classes are not GC roots by themselves. However, in all situations where no custom

189

classloaders are used, it is appropriate to treat them as such. This is JProfiler's default mode
when searching for garbage collector roots, but you can change it in the path to root options
dialog.

@ Path To GC Root Options x

Select options for the path to root analysis:

Calculating a single path to a garbage collector root iz faster and often sufficent
for memory leak detection,

(®) Single root &)
CUpto 2 % |roots

O aliroots @

This search follows strong references only, as per the initial retention
setting for the heap dump.

[] Also follow soft, weak, phantom and finalizer references for this search o
I Stop search at dasses Io

Cancel

If you have problems interpreting the shortest path to a GC root, you can search for additional
paths. Searching for all paths to GC roots is not recommended in general because it can produce
a large number of paths.

In contrast to the live memory views, the heap walker never shows unreferenced objects. However,
the heap walker may not only show strongly referenced objects. By default, the heap walker also
retains objects that are only referenced by soft references, but eliminates objects that are only
referenced by weak, phantom or finalizer references. Because soft references are not garbage
collected unless the heap is exhausted, they are included because otherwise you might not be
able to explain large heap usages. In the options dialog which is shown when you take a heap
snapshot, you can adjust this behavior.

@ Heap Snapshot Options x

Heap Dump Options Overhead Options

[] Select recorded objects

Initislly, the hasp wralker vil show onhy those cbjects that have been recorded in
the dynamic memory view section.

Perform full GC in heap snapshot

Retain objects held by strong references only

[soft
[Qweak
[Iphantom
v Unreferenced DbjE‘DﬁnaIizer =r, The dynamic
memory Views can nts.

OK Cancel
ok Cancel

Having weakly referenced objects in the heap walker may be interesting for debugging purposes.
If you want to remove weakly referenced objects later on, you can use the "Remove objects
retained by weak references" inspection.

190

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 13} Inspections oSGy

Current object set: 46,442 objects in 1,004 classes
1 selection step, 3,241 kB shallow size

Available Inspections:

= Duplicate objects Description

Remove objects that are retained through & weak, soft or phantom reference.
[collections & Arrays
This will only work for weak reference types that you have not removed when taking the
h hot.
P& Reference & field analysis =3P SnaApsne
Configuration
& Weak references
Weak reference type: soft references -
Select weakly referenced objects
Status
Remove objects retained by weak references
o Mot calculated @ Calculate inspection and create a new object set

W Stack references

T Thread locals

) Classes & Class loaders A

When searching for paths to GC roots, the reference types that were selected to retain objects
in the heap walker options dialog are taken into account. In that way, the path to GC root search
can always explain why an object was retained in the heap walker. In the options dialog for the
path to GC root search you can widen the acceptable reference types to all weak references.

@ Path To GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root i faster and often sufficent
for memory leak detection,

(®) Single root)
CUpto 2 7 |roots

O Aliroots @

This search follows strong references only, as per the initial retention
setting for the heap dump.

ID Also follow soft, weak, phantom and finalizer references for this search Io

Stop search at dasses (7]

Cancel

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the same
type that are part of a memory leak. In many cases, the analysis of a single object will also be
valid for the other objects in the current object set. For the more general case where the objects
of interest are referenced in different ways, the "Merged dominating references" view will help
you to find out which references are responsible for holding the current object set on the heap.

191

Q Jasses 'l Allocations ™ Biggest Objects 3 References ©) Time 3} Inspections oSGy

Current object set: 3,004 instances of java.uti.HashMap$Node
2 selection steps, 96 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references + Objects to GC roots Use ... w [}

£ 77% - 2,338 instances Ao askla L la util HashMapshode]] ~
) BN 72% - 2,168 instan(GC roots o objects java.utilHashMap
(- 26% - 796 instances 3 1instance of bezier.BezierAnim
-8 16% - 485 instances (¥ 45 instances of java.util. HashSet

=5l 4% - 125 instances (Y 1instance of sun.awt.resources.awt

[SR] 4% - 125 instances & dass java.awt.Toolkit
b 4% - 125 instances (3L GCroot

-1 3% - 98 instances linstance of sun.awt.windows.WToolkit

-1 3% - 96 instances dass sun.awt.ExtendedKeyCodes

1 3% - 96 instances 1instance of sun.awt.windows.WDesktopProperties

-1 1% - 49 instances dass java.security.Provider

1

1

1

-1 1% - 41 instances dass sun.java2d.loops.SurfaceType
-1 1% - 36 instances 20 instances of java.beans.PropertyChangeSupport$PropertyChangelistenerMap
-1 1% - 32 instances dass sun.font.TypelFont
0% - 28 instances 18 instances of java.security.Provider§Service
0% - 26 instances dass sun.awt.windows.WFontConfiguration
- 0% - 26 instances dass sun.util.logging.PlatformLogger

- 0% - 20 instances iinstance of sun.awt.Win32FontManager e
nes . 1o 1 inetanca af s s ok sarinel MEnnEr, i

All references may be transitive ()

Each node in the dominating reference tree tells you how many objects in the current object set
will be eligible for garbage collection if you eliminate that reference. Objects that are referenced
by multiple garbage collector roots may not have any dominating incoming reference, so the
view may only help you with a fraction of the objects, or it may even be empty. In that case, you
have to use the merged incoming reference view and eliminate garbage collector roots one by

one.

192

E Configuration In Detail

E.1 Trouble Shooting Connection Problems

When a profiling session cannot be established, the first thing to do is to have a look at the
terminal output of the profiled application or application server. For application servers, the
stderr stream is often written to a log file. This may be a separate log file and not the main log
file of the application server. For example, the Websphere application server writes a
nati ve_stderr. | og file where only the stderr output is included. Depending on the content
of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains" Wi ti ng for connection ...",theconfiguration of the profiled application
is ok. The problem might then be related to the following questions:

+ Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your local
machine? Unless the profiling agent is configured to start up immediately with the "nowait"
option, it will wait until the JProfiler GUI connects before letting the VM continue to startup.

+ Is the host name or the IP address configured correctly in the session settings?

+ Did you configure a wrong communication port? The communication port has nothing to do
with HTTP or other standard port numbers and must not be the same as any port that is
already in use. For the profiled application, the communication port is defined as an option
to the profiling VM parameter. With the VM parameter - agent pat h: <path to jprofilerti
I'i brary>=port=25000, a port of 25000 would be used.

* Isthere afirewall between the local machine and the remote machine? There may be firewalls
for incoming as well as for outgoing connections or even firewalls on gateway machines in
the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is already in
use. In that case, check the following questions:

+ Didyou start the profiled application multiple times? Each profiled application needs a separate
communication port.

+ Are there any zombie java processes of previous profiling runs that are blocking the port?
+ Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JProfil er> and your application or
application server starts up normally, the - agent path: [path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call in your
startup script is actually executed and add the VM parameters there.

193

E.2 Scripts In JProfiler

JProfiler's built-in script editor allows you to enter custom logic in various places in the JProfiler
GUI, including custom probe configuration, split methods, heap walker filters and many more.

@ Edit >
Settings Edit Search Code Help

SCDYEElnos %O
D C = & | T |

Show . Test
Undo Redo Copy Cut Paste Find Raplace Compile Help

Flease enter an expression (no trailing semicolon) or a script {ends with a return statement) that
consists of regular Java code. The following parameters are available:

B

- com. jprofiler.api.agent. ScriptContext scriptContext
- javax.serviet.http HttpServletRequest servietRequest

The expected return type is java.lang.String

Script:

2 return servletRequest.getParameter("acticn™);
3

The box above the edit area shows the available parameters of the script as well as its return
type. By invoking Help->Show Javadoc Overview from the menu you can get more information on
classes from the com j profil er. api . * packages.

A number of packages can be used without using fully-qualified class names. Those packages
are:

+ java.util.
+ java.io.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names.

All scripts are passed an instance of com j profi | er. api . agent. Scri pt Cont ext that allows
you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the general
settings. By default, the JRE that JProfiler runs with is used. In that case, code completion does
not offer parameter names and Javadoc for classes in the JRE.

@ General Settings X

?SassiDnDEfauhs Snapshots IDE Integrations Updates Miscellaneous

JDK For Code Editor

The runtime libraries of the configured JDK will be used for code completion and script compilation. You can override
the JDK for each session in the profiling settings.

(®) Currently Used JRE [not recommended])

(O oK || [Select one]

JREs For Launching Profiling Sessions

The selected JRE will be used as a default for new profiing sessions that launch a JVM from JProfiler.

Default JRE: | 1.8 [C:\Program

jdk1.8.0_101%re] ~ Configure JREs

194

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates to the
required return type. For example,

object.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of the
required return type as the last statement:

i mport java.l ang. managenent . Managenent Fact ory;
return Managenent Fact ory. get Runti meMXBean() . get Upti ne();

The above example would work for a script telemetry. JProfiler automatically detects whether
you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the script

history. If you click on the & Show History tool bar button, all previously used scripts are shown.
Scripts are organized by script signature and the current script signature is selected by default.

Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot (".")
shows this popup after a delay if no other character is typed. The delay is configurable in the
editor settings. While the popup is being displayed, you can continue to type or delete characters
with Backspace and the popup will be updated accordingly. "Camel-hump" completion is
supported. For example, typing NPE and hitting CTRL- Space will propose java. | ang.
Nul | Poi nt er Excepti on among other classes. If you accept a class that is not automatically
imported, the fully qualified name will be inserted.

1 This assumes that a query parameter named "action" is used =
2 return servletRequest. ge‘:Pa;:a;neter{"acti:n") 2
3 @ getServletPath() String A
@ getRegquestedSessionId() String
@ getRequestURL () String
@ getRemoteUser () String
@ getQueryString () String
(@ g=tPathTIranslated() String
@ getPathInfo () String
@ getMethod () String
@ getHeader (String arg0) String
@ getContextPath() String w

The completion popup can suggest:

O variables and script parameters. Script parameters are displayed in bold font.
packages, when typing an import statement

O classes

O fields, when the context is a class

@ methods, when the context is a class or the parameter list of a method

195

Parameters with classes that are neither contained in the configured session class path nor in
the configured JDK are marked as [unr esol ved] and are changed to the genericj ava. | ang.
Obj ect type. To be able to call methods on such parameters and get code completion for them,
add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown as red underlines in the editor and red stripes in the right gutter. Warnings
such as an unused variable declaration are shown as a yellow backgrounds in the editor and
yellow stripes in the gutter. Hovering the mouse over an error or warning in the editor as well
as hovering the mouse over a stripe in the gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors in
the code, yellow if there are warnings and red if errors have been found. You can configure the
threshold for problem analysis in the editor settings.

@ Java Editor Settings X

Code Completion Popup Settings

Autoimpart dasses during code completiors
Auto-popup code completion after dot

Delay: 1,000 55 ms

Popup height: | 105 entries

Display Code Problems

() None
(") Errors only

@ Errors and Warnings

Javadoc Settings
[Use online documentation (G

DK For Code Editor

The runtime libraries of the configured JDK will be used for code completion and script compilation. You can
configure a default JDK in the general settings.

(®) Default DK

() Override default IDK with | [Select one] Configure JDKs

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, you might want
to try the actual compilation. Choosing Code->Test Compile from the menu will compile the script
and display any errors in a separate dialog. Saving your script with the OK button will not test
the syntactic correctness of the script unless the script is used right away.

Key bindings

Pressing SHI FT- F1 opens the browser at the Javadoc page that describes the element at the
cursor position. Javadoc for the Java runtime library can only be displayed if a JDK with a valid
Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from the
window menu to display the key map editor. Key bindings are saved in the file $HOVE/ .
jprofiler10/editor_keynap. xm . This file only exists if the default key map has been copied.
When migrating a JProfiler installation to a different computer, you can copy this file to preserve
your key bindings.

196

F Command Line Reference

F.1 Command Line Executables For Profiling

JProfiler includes a number of command line tools for setting up the profiling agent and controlling
profiling actions from the command line.

Loading the profiling agent into a running JVM

With the command line utility bi n/ j penabl e, you can load the profiling agent into any running
JVM with a version of 6 or higher. With command line arguments you can automate the process
so that it requires no user input. The supported arguments are:

Usage: jpenable [options]

jpenabl e starts the profiling agent in a selected |ocal JVM so you can connect
toit froma different conputer. If the JProfiler GU is running locally, you
can attach directly fromthe JProfiler GU instead of running this executable.

* |f no argument is given, jpenable attenpts to discover |ocal JVMs that
are not being profiled yet and asks for all required i nput on the command
l'i ne.

* with the follow ng argunents you can partially or conpletely supply all
user input on the command |ine:

-d --pid=<Pl D> The PID of the JVMthat should be profiled
-n --noi nput Do not ask for user input under any circunstances
-h --help Show t his hel p

- - opti ons=<OPT> Debuggi ng options passed to the agent

QU node: (default)

-g --qgui The JProfiler GU wll be used to attach to the JVM

-p --port=<nnnnn> The port on which the profiling agent should listen for
a connection fromthe JProfiler GU

O fline node:

-o --offline The JVMwi Il be profiled in offline node
-c --config=<PATH> Path to the config file with the profiling settings
-i --id=<ID> ID of the session in the config file. Not required, if

the config file holds only a single session.

Note that the JVM has to be running as the same user as jpenabl e, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bi n/ j pdunp command line tool that saves
an HPROF snapshot [p. 179] without loading the profiling agent into the VM:

197

Usage: jpdunp [options]

j pdunp saves an HPROF heap dunp froma locally running JVMto a file.
The HPROF file can then be opened in the JProfiler GU.

* if no argument is given, jpdunp lists all locally running JVMs.
* with the followi ng argunents you can partially or conpletely supply all
user input on the command |ine:

-p --pid=<Pl D> The PID of the JVM whose heap shoul d be dunped
Wth a specified PID, no further questions will by asked.
-a --all Save all objects. If not specified, only live objects are
dunped
-f --file=<PATH> Path to the dunp file. If not specified, the dunp file
<VM nane>. hprof is witten in the current directory.
If the file already exists, a nunber is appended.
-h --help Show t his hel p

Note that the JVM has to be running as the sane user as jpdunp, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively with jpdunp.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap snapshot.
Also, because the profiling agent can never be unloaded, this method is suitable for JVMs running
in production.

Controlling the profiling agent

When you start the bi n/ j pcontr ol | er executable without arguments, it attempts to connect
to a profiled JVM on the local machine. If multiple profiled JVMs were discovered, you can select
one from a list. Because the discovery mechanism uses the attach API of the Oracle JVM, this
only works for Oracle JVMs starting with Java 6.

j pcontrol I er can only connect to JVMs where the profiling settings have been set, so it does
not work if the JVM was started with the "nowait" option for the - agent pat h VM parameter.
That option is set when choosing the Startup immediately, connect later with the JProfiler GUI radio
button on the "Startup mode" screen of an integration wizard and no JProfiler GUI has yet
connected to the agent. Using j penabl e without the --of f1 i ne argument also requires a
connection from the JProfiler GUI before j pcontrol | er can connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot JVM
with a version of 6 or higher, you have to pass the VM parameter - Dj prof i | er. j mxSer ver Port =
[port] to the profiled JVM. An MBean server will be published on that port and you can specify
the chosen port as an argument to j pcontrol | er. With the additional VM parameter
-Djprofiler.jnmPasswordFil e=[file] youcan specify a properties file with key-value pairs
of the form user =passwor d to set up authentication. Note that these VM parameters are
overridden by the com sun. nanagenent . j nxr enpt e. port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to connect
to a remote server by invoking j pcontrol | er host: port. If the remote computer is only
reachable via an IP address, you have to add - Dj ava. rmi . server. host nane=[| P addr ess]
as a VM parameter to the remote VM.

The supported arguments of jpcontroller are shown below:

198

Usage: jpcontroller [host:port] | [pid]

* if no argunent is given, jpcontroller attenpts to discover |ocal JVMs that
are being profiled

* if a single nunmber is specified, jpcontroller attenpts to connect to the JVM
with process ID [pid]. If that JVMis not profiled, jpcontroller cannot
connect. In that case, use the jpenable utility first.

* otherw se, jpcontroller connects to "host:port", where port is the value
that has been specified in the VM paraneter -Djprofiler.jnxServerPort=[port]
for the profiled JVM

199

F.2 Command Line Executables For Working With Snapshots

When using offline profiling [p. 108] to save snapshots programmatically, it may also be necessary
to programmatically extract data or reports from those snapshots. JProfiler offers two separate
command line executables, one for exporting views from a snapshot and one for comparing

snapshots.

Exporting views from a snapshot

The executable bi n/ j pexport exports view data to various formats. If you execute it with the
- hel p option, you will getinformation on the available view names and view options. For reasons

of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [gl obal options]
"vi ew nane" [options] "output file"
"view nane" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
"view name" is one of the view nanes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options:

- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the sel ected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified.

- mappi ngfile=<fil e>
The mapping file for the sel ected obfuscator.

- out put di r =<out put di rectory>
Base directory to be used when the output file for a viewis a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a view cannot be set and
continue with the next view The default value is "false", i.e. the
export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character>
The field separator character for the CSV exports. Defaults to ',

- sessi on=<sessi on id>
An alternate session fromwhich the view settings shoul d be taken. The
session id can be found in the application settings next to the
session nanme. By default, the view settings are taken fromthe session
that is enbedded inside the snapshot file.

Avai | abl e vi ew nanes and opti ons:
* Tel enetryHeap, Tel enetryQbjects, Tel emetryThroughput, Tel emetryCC,
Tel enetryC asses, Tel enetryThreads, Tel enetryCPU
opti ons:
-format=htm | csv
Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file.
-m nwi dt h=<nunber of pi xel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pixel s>
M ni mum hei ght of the graph in pixels. The default value is 600.

* Bookmar ks, ThreadMonitor, CurrentMnitorUsage, MonitorUsageH story
opti ons:
-format=htnm | csv

* Al Objects

200

opti ons:

-format=htm | csv

-viewfilters=<conmma-separated |ist>
Sets view filters for the export. If you set view filters, only the
speci fi ed packages and their sub-packages wi |l be displayed by the
exported view.

-viewfiltermde=startsw th|endsw th|contains|equals
Sets the view filter node. The default value is contains.

-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.

- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
cl asses.

- expandpackages=true| f al se
Expand package nodes in the package aggregation |evel to show
contai ned cl asses. The default value is "false". Has no effect for
ot her aggregation levels and with csv output fornmat.

Recor dedObj ect s
like Al Objects, but with additional options:
-liveness=live|gc|all

Sel ects the |iveness npbde for the export, i.e. whether to display live
obj ects, garbage col |l ected objects or both. The default value is live
obj ect s.

Al | ocationTree
opti ons:

-format =ht m | xm

-viewfilters=<conmma-separated |ist>

-viewfilternmde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-vi ewmrode=tr ee| t r eemap
Sel ects the view node for the export. The default value is "tree".

-w dt h=<nunber of pixel s>
M ni mum wi dth of the tree map in pixels. The default value is 800.
Only relevant if "viewrnde" is set to "tree".

- hei ght =<nunber of pixel s>
M ni mrum hei ght of the tree map in pixels. The default value is 600.
Only relevant if "viewrnde" is set to "tree".

-class=<fully qualified class nane>
Specifies the class for which the allocation data shoul d be
calculated. If enpty, allocations of all classes will be shown. Cannot
be used together with the package option.

- package=<ful ly qualified package nane>
Speci fies the package for which the allocation data should be
calculated. If enpty, allocations of all packages will be shown.
Cannot be used together with the class option.

-liveness=live|gc|all

Al | ocat i onHot Spot s

opti ons:
-format =ht m | csv| xm
-viewfilters=<conma-separated |ist>
-viewfilternode=startswith|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-class=<fully qualified class nanme>
- package=<ful ly qualified package nane>
-liveness=live|gc|all
-unprofi | edcl asses=separ at el y| addt ocal | i ng

Sel ects if unprofiled classes should be shown separately or be added

201

to the calling class. The default value is to show unprofiled classes
separately.

-val uesunmat i on=sel f| t ot al
Det erm nes how the tines for hot spots are calcul ated. Defaults to
"sel f".

- expandbackt races=true| f al se
Expand backtraces in HTM. or XM. format. The default value is "fal se".

* Cl assTracker
l'i ke Tel enetryHeap, but with additional options:
-cl ass
The tracked class. If missing, the first tracked class is exported.

* Call Tree
opti ons:

-format=htm | xm

-viewfilters=<conma-separated |ist>

-viewfilternode=startswi th|endsw th|contains|equal s

-viewfilteroptions=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent

-vi ewnode=t r ee| t r eemap

- W dt h=<nunber of pi xel s>

- hei ght =<nunber of pixel s>

-t hr eadgr oup=<nane of thread group>
Sel ects the thread group for the export. If you specify thread as well
, the thread will only be searched in this thread group, otherw se the
entire thread group will be shown.

-t hread=<nane of thread>
Selects the thread for the export. By default, the call tree is nmerged
for all threads.

-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Selects the thread status for the export. The default value is
"runni ng".

* Hot Spot s
opti ons:

-format =htm | csv| xml
-viewfilters=<comma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hread=<nanme of thread>
-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=t rue| fal se
-unprofi | edcl asses=separ at el y| addt ocal | i ng
-val uesunmat i on=sel f| t ot al

* Met hodStatistics
opti ons:
-format =htm | csv
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
-viewfilters=<conma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive

* Conpl exity
opti ons:

-format=htm | csv| properties

-fit=best|constant|l|inear|quadratic|cubic|exponential|logarithmc|n_log_n
The fit that should be exported. The default value is "best". No curve
fitting data is exported to CSV.

- met hod=<net hod nane>
The nethod nane for which the conplexity graph should be exported. If

202

not given, the first nethod will be exported. Otherw se, the first
net hod name that starts with the given text will be exported.

-wi dt h=<nunber of pixel s>

- hei ght =<nunber of pi xel s>

* ThreadHi story
l'i ke Tel enetryHeap, but w th changed opti ons:
-format =ht m

* MonitorUsageStati stics
opti ons:
-format =htm | csv
-type=noni tors| t hr eads| cl asses
Sel ects the entity for which the nonitor statistics should be
cal cul ated. The default value is "nonitors".

* ProbeTi nmeLi ne
i ke ThreadH story, but with additional options:
- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

* ProbeControl Obj ects
opti ons:
- pr obei d=<i d>
-format =htm | csv

* ProbeCal | Tree
opti ons:
- pr obei d=<i d>
-format=htm | xm
-viewfilters=<conma-separated |ist>
-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-vi ewnnde=tree| treemap
-wi dt h=<nunber of pixel s>
- hei ght =<nunber of pi xel s>
-t hr eadgr oup=<nane of thread group>
-t hread=<nane of thread>
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Selects the thread status for the export. The default value is "all".

* ProbeHot Spot s
opti ons:
- pr obei d=<i d>
-format =htm | csv| xm
-viewfilters=<comma-separated |ist>
-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hr ead=<nanme of thread>
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=true| f al se

* ProbeTel emetry
l'i ke Tel enetryHeap, but w th additional options:
- pr obei d=<i d>
-tel emetrygroup
Sets the one-based index of the telenmetry group that should be
exported. This refers to the entries that you see in the drop-down
i st above the probe telenetry view. The default value is "1".

203

* ProbeEvents
opti ons:
- pr obei d=<i d>
-format =ht m | csv| xn

* ProbeTracker
l'i ke Tel enetryHeap, but with additional options:
- pr obei d=<i d>
- i ndex=<nunber >
Sets the zero-based i ndex of the drop-down |ist that contains the
tracked el ements. The default value is O.

Some examples for using the export executable are:

j pexport test.jps Tel enmetryHeap heap. htni

j pexport test.jps Recordedhj ects -aggregati on=package - expandpackages=true obj ects. ht n

j pexport test.jps -ignoreerrors=true -outputdir=/tnp/export
Recor dedCbj ect s obj ects. csv

Al l ocati onTree -cl ass=java.lang. String all ocati ons. xni

Comparing snapshots

The executable bi n/ j pconpar e compares different snapshots [p. 113] and exports them to

HTML or a machine-readable format. Its - hel p output is reproduced below, again without any
duplicate explanations.

Usage: jpconpare "snapshot file"[,"snapshot file",...] [gl obal options]
"conpari son nane" [options] "output file"
"conparison name" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
"conpari son nane" is one of the conparison nanes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options

- out put di r=<out put directory>
Base directory to be used when the output file for a conparison is a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a conparison cannot be set
and continue with the next conparison. The default value is "false"
i.e. the export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character>
The field separator character for the CSV exports. Defaults to ','.

-sortbyti me=fal se|true
Sort the specified snapshot files by nodification time. The default
value is fal se

-listfile=<fil enane>
Read a file that contains the paths of the snapshot files, one
snapshot file per |ine

Avai | abl e conpari son nanes and options:
* (Objects
opti ons:
-format=htm | csv

204

Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file.
-viewfilters=<conmma-separated |ist>
Sets view filters for the export. If you set viewfilters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfiltermde=startsw th|endsw th|contains|equal s
Sets the view filter node. The default value is contains.
-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.
- obj ects=al | | recor ded| heapwal ker
Conpare all objects (JVMIl only) or recorded objects, or objects in
the heap wal ker. The default is all objects for .jps files and
heapwal ker for HPROF files.
- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is

cl asses.

-liveness=live| gc|all
Sel ects the |liveness node for the export, i.e. whether to display live
obj ects, garbage col |l ected objects or both. The default value is live
obj ect s.

* Al ocati onHot Spot s
opti ons:

-format=htm | csv

-viewfilters=<conma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equal s

-viewfilteropti ons=casesensitive

-cl asssel ecti on
Cal cul ate the conparison for a specific class or package. Specify a
package with a wildcard, like 'java.aw.*".

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separatel y.

-val uesunmat i on=sel f| t ot al
Det erm nes how the tines for hot spots are calcul ated. Defaults to
"sel f".

* Al ocationTree
opti ons:
-format=ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
-cl asssel ection
- aggr egat i on=net hod| cl ass| package| conponent
-liveness=live|gc|all

* Hot Spot s
opti ons:
-format=htm | csv
-viewfilters=<comma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteropti ons=casesensitive
-firstthreadsel ection
Cal cul ate the conparison for a specific thread or thread group.
Specify thread groups like '"group.*" and threads in specific thread
groups like 'group.thread' . Escape dots in thread names wth

205

*

*

*

*

backsl ashes.

- secondt hr eadsel ecti on
Cal cul ate the conparison for a specific thread or thread group. Only
available if '"firstthreadselection' is set. If enpty, the sane val ue
as for 'firstthreadselection' will be used. Specify thread groups |ike
"group.*' and threads in specific thread groups |ike 'group.thread .
Escape dots in thread names with backsl ashes.

-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
Selects the thread status for the export. The default value is
"runni ng".

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=t ot al | aver age
Sel ects the difference calculation method for call times. The default
value is total tines.

-unprofi | edcl asses=separ at el y| addt ocal | i ng

-val uesunmat i on=sel f | t ot al

Cal | Tree

opti ons:
-format =ht m | xm
-viewfilters=<comm-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteropti ons=casesensitive
-firstthreadsel ection
- secondt hr eadsel ecti on
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
- aggr egat i on=net hod| cl ass| package| conponent
-di fferencecal cul ati on=total | aver age

Tel enet r yHeap
opti ons:
-format =htm | csv
-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pixel s>
M ni mrum hei ght of the graph in pixels. The default value is 600.
- val uet ype=current | maxi munj bookmar k
Type of the value that is calculated for each snapshot. Default is the
current val ue.
- booknar kname
If valuetype is set to 'booknmark', the nane of the bookmark for which
t he val ue shoul d be cal cul at ed.
- measur enent s=maxi num fr ee, used
Measurenents that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'used'.
- menor yt ype=heap| nonheap
Type of the nenory that should be anal yzed. Default is 'heap'.

- menor ypool
If a special nmenory pool should be analyzed, its nane can be specified
with this parameter. The default is enpty, i.e. no special nmenory
pool .

Tel enetryoj ect s
opti ons:
-format=htm | csv
-m nwi dt h=<nunber of pixel s>
- m nhei ght =<nunber of pixel s>
-val uet ype=current | maxi nur booknmar k
- booknar knane
- nmeasur enent s=t ot al , nonarrays, arrays
Measurenments that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'total"'.

Tel enetryC asses

206

l'i ke Tel enetryObj ects, but with changed options:
-measurenents=total ,filtered,unfiltered

* Tel emet ryThr eads

l'i ke Tel enetryQObj ects, but with changed options:
- measur enent s=t ot al , runnabl e, bl ocked, neti o, wai ti ng

* ProbeHot Spot s

opti ons:

-format =htm | csv

-viewfilters=<comma-separated |ist>

-viewfilternpde=startswi th|endswi th|contains|equal s|w | dcard| regex

-viewfilteropti ons=excl ude, casesensitive

-firstthreadsel ection

- secondt hr eadsel ecti on

-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=t ot al | aver age

- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

* ProbeCal | Tree

|'i ke ProbeHot Spots, but w th changed opti ons:
-format =ht m | xm

* ProbeTel enetry

like Tel emetryCbjects, but with additional or changed options:

- measur enent s
The one-based indices of the neasurenents in the telemetry group that
are shown in the conparison graph. Concatenate nultiple values with
commas, like "1,2". The default value is to show all measurenents.

- pr obei d=<i d>

-tel emet rygroup
Sets the one-based index of the telenmetry group that should be
exported. This refers to the entries that you see in the drop-down
Iist above the probe telemetry view The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format is

deduced from the extension of the output file:

.html

The view or comparison is exported as an HTML file. A directory named j profi | er _i mages

will be created that contains images used in the HTML page.
.csv

The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes the
separator character from the regional settings. JProfiler uses a semicolon as the separator in
locales that use a comma as a decimal separator and a comma in locales that use a dot as a
decimal separator. If you need to override the CSV separator character you can do so by setting

the global csvsepar at or option.
xml
The data is exported as XML. The data format is self-descriptive.

207

If you would like to use different extensions, you can use the f or mat option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots have heap dumps in them, you can use the bi n/ j panal yze executable
to prepare the heap dump analysis in advance [p. 69] . Opening the snapshot in the JProfiler GUI
will then be very fast. The usage information of the tool is shown below:

Usage: jpanalyze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd
[options] is a list of options in the format -option=val ue

Opt i ons:

- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the selected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified

- mappi ngfil e=<fil e>
The mapping file for the sel ected obfuscator

-renoveunr ef erenced=true| f al se
If unreferenced or weakly referenced objects should be renoved

-retai ned=true| fal se
Cal cul ate retained sizes (biggest objects). renpveunreferenced will be
set to true

-retai nsoft=true|fal se
If unreferenced objects are renoved, specifies if soft references
shoul d be retained.

-ret ai nweak=true| f al se
If unreferenced objects are renpved, specifies if weak references
shoul d be retained.

-ret ai nphant onrt rue| f al se
If unreferenced objects are renoved, specifies if phantom references
shoul d be retained.

-retainfinalizer=true|false
If unreferenced objects are renoved, specifies if finalizer references
shoul d be retained.

Ther enoveUnr ef er enced, ther et ai ned and allther et ai n* command line options correspond
to the options in the heap walker options dialog.

208

F.3 Gradle Tasks

JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a number
of command line executables for working with snapshots [p. 200] that have corresponding Gradle
tasks.

Using Gradle tasks

To make the JProfiler Gradle tasks available in a Gradle build file, you can use the pl ugi ns block

pl ugi ns {
id 'comjprofiler' version 'XY.Z
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bi n/ gradl e. j ar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
instalIDir = file('/path/to/jprofiler/hone')
}

Profiling from Gradle

With tasks of type com j profiler.gradl e. JavaProfil e you can profile any Java process.
This class extends Gradle's built-in JavaExec, so you can use the same arguments for configuring
the process. For profiling tests, use tasks of type com j profil er. gradl e. Test Profi | e that
extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where the
profiling agent waits on the default port 8849 for a connection from the JProfiler GUI. For offline
profiling, you have to add a couple of attributes that are shown in the table below.

Attribute Description Required
offline Whether the profiling run should be in offline mode. No, of f | i neand
nowai t cannot
nowait Whether profiling should start immediately or whether both bet r ue.
the profiled JVM should wait for a connection from the
JProfiler GUI.
sessionld Defines the session ID from which profiling settings should Required if

be taken. Has no effect if neither nowai t nor offline are
set because in that case the profiling session is selected |+ of flineisset

in the GUI. * nowait is set
fora1.5)VM
configFile Defines the config file from which the profiling settings No
should be read.
port Defines the port number on which the profiling agent No

should listen for a connection from the JProfiler GUI. This
must be the same as the port configured in the remote

209

Attribute Description Required

session configuration. If not set or zero, the default port
(8849) will be used. Has no effectif of f | i ne is set because
in that case there is no connection from the GUI.

debugOptions | If you want to pass any additional library parameters for No
tuning or debugging purposes, you can do that with this
attribute.

An example for profiling a Java class with a main method that is compiled by the containing
project is given below:

task run(type: comjprofiler.gradle.JavaProfile) {
main = 'com mycor p. M\yMai nCl ass'
cl asspath sourceSets. main.runti med asspath
offline = true
sessionld = 80
configFile = file('config/config.xm")

You can see a runnable example of this task in the api / sanpl es/ of f|1 i ne sample project.
Unlike the standard JavaExec task, the JavaPr of i | e task can also be started in the background
by calling createProcess() on it. See the api/sanpl es/ nhean sample project for a
demonstration of this feature.

If you need the VM parameter that is required for profiling, the com j profiler. gradl e.
Set Agent pat hProperty task will assign it to a property whose name is configured with the
propert yNanme attribute. Applying the JProfiler plugin automatically adds a task of this type
named set Agent Pat hPr operty to your project. For getting the VM parameter that would be
used in the previous example, you can simply add

set Agent Pat hProperty {
propertyNane = 'profilingVnParaneter'
offline = true
sessionld = 80
configFile = file('config/config.xm")

to your project and add a dependency to set Agent Pat hPr oper ty to some other task. Then
you can use the project property prof i | i ngVnPar anet er in the execution phase of that task.
When assigning the property to other task properties, surround its usage with adoFirst {..
. } code block in order to make sure that you are in the Gradle execution phase and not in the
configuration phase.

Exporting data from snapshots

Thecom jprofiler.gradl e. Export task can be used to export views from a saved snapshot
and replicates the arguments of the bi n/ j pexport command line tool [p. 200]. It supports the
following attributes:

210

Attribute Description Required
snapshotFile | The path to the snapshot file. This must be a file with a . j ps Yes
extension.
session An alternate session from which the view settings should be No
taken. The session ID can be found in the application settings
next to the session name. By default, the view settings are
taken from the session that is embedded inside the snapshot
file.
ignoreErrors | Ignore errors that occur when options for a view cannot be No
set and continue with the next view. The defaultvalueisf al se,
meaning that the export is terminated when the first error
occurs.
csvSeparator | The field separator character for the CSV exports. Defaults to No
obfuscator Deobfuscate class and method names for the selected No
obfuscator. Defaults to "none", for other values the
mappi ngFi | e option has to be specified. One of none,
proguard or yguar d.
mappingFile | The mapping file for the selected obfuscator. May only be set Only if
if the obf uscat or attribute is specified. obf uscat or
is specified

On the export task, you call the vi ews method and pass a closure to it in which you call
view nane, file[, options]) oneormultipletimes. Each calltovi ewproduces one output
file. The nane argument is the view name. For a list of available view names, please see the help
page on thej pexport command line executable [p. 200]. The argumentf i | e is the outputfile,
either an absolute file or a file relative to the project. Finally, the optional opt i ons argument is
a map with the export options for the selected view.

An example for using the export task is:

task export (type:
snapshotFile =

views {

view ' Cal | Tree',
vi ew(' Hot Spot s',
[threadSt at us:

comjprofiler.gradle. Export) {
file('snapshot.jps')

‘call Tree.htm ")
' hot Spots. htm ',

"all', expandBacktraces: 'true'])

Comparing snapshots

Like the bi n/ j pconmpar e command line tool [p. 200], the com j profi |l er. gradl e. Conpare
task can compare two or more snapshots. It attributes are:

Attribute

Description

Required

snapshotFiles

The snapshot files that should be compared. You can pass any
I t er abl e containing objects that gradle resolves to file collections.

Yes

211

Attribute Description Required

sortByTime If set to t r ue all supplied snapshots files are sorted by their file No
modification time, otherwise they are compared in the order they
were specified in the snapshot Fi | es attribute.

ignoreErrors | Ignore errors that occur when options for a comparison cannot No
be set and continue with the next comparison. The default value
is f al se, meaning the export is terminated when the first error
occurs.

Just like exported views are defined for the Export task, the Conpar e task has a conpari sons
method where nested callsto conpari son(nanme, file[, options]) definethecomparisons
that should be performed. The list of available comparison names is available on the help page
of the j pconpar e command line executable [p. 200] .

An example for using the compare task is:

task conpare(type: comjprofiler.gradle.Conpare) {
snapshotFiles = files('snapshotl.jps', 'snapshot2.jps')
conpari sons {
conparison('CallTree', 'callTree.htm ")
conpari son(' Hot Spots', 'hot Spots.csv',
[val ueSummation: '"total', format: 'csv'])

or, if you want to create a telemetry comparison for multiple snapshots:

task conpare(type: comjprofiler.gradle.Conpare) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
sortByTi me = true
conpari sons {
conparison(' Tel enetryHeap', 'heap.htm', [valueType: 'nmaxinuni])
conpari son(' ProbeTel enetry', 'jdbc.htm ', [probeld: 'JdbcProbe'])

Analyzing heap snapshots

The gradle task com j profiler. gradl e. Anal yze has the same functionality as the bi n/
j panal yze command line tool [p. 200] .

The task has asnapshot Fi | es attribute like the Conpar e task to specify the processed snapshots
and obfuscat or and mappi ngfil e attributes like the Export task for deobfuscation. The
attributes renmoveUnr ef er enced, retainSoft, ret ai n\Wak, r et ai nPhant om
retainFinalizer andretai ned correspond the arguments of the command line tool.

An example for using the Anal yze task is given below:

task anal yze(type: comjprofiler.gradle.Analyze) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
retai nWweak = true
obf uscat or ' proguard'
mappi ngFile = file(' obfuscation.txt")

212

F.4 Ant Tasks

The Ant'"” tasks provided by JProfiler are very similar to the Gradle tasks. This chapter highlights
the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bi n/ ant . j ar . In order to make a task available to Ant,
you must first insert a t askdef element that tells Ant where to find the task definition. All
examples below include that taskdef. It must occur only once per build file and can appear
anywhere on the level below the project element.

Itis not possible to copy the ant . j ar archive to thel i b folder of your Ant distribution, you have
to reference a full installation of JProfiler in the task definition.

Profiling from Ant

The com jprofiler.ant.Profil eTask is derived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
Prof i | eJava Gradle task [p. 209]. Ant attributes are case-insensitive and usually written in lower
case.

<t askdef nanme="profile"
cl assnane="com j profiler.ant.Profil eTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
<profile classname="M/Mai nC ass" of fline="true" sessi onid="80">
<cl asspat h>
<fileset dir="lib" includes="*.jar" />
</ cl asspat h>
</profile>
</target>

Exporting data from snapshots

Withthecom j profil er. ant. Export Task you can export view from snapshots, just like with
the Export Gradle task [p. 209] . Views are specified differently than in the Gradle task: they are
nested directly below the task element and options are specified with nested opt i on elements.

<t askdef nanme="export"
cl assnane="com j profiler.ant. Export Task"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<t arget nanme="export">
<export snapshotfil e="snapshots/test.jps">
<vi ew nane="Cal | Tree" file="calltree.htm"/>
<vi ew nane="Hot Spots" fil e="hotspots. htnl ">
<option name="expandbacktraces" val ue="true"/>
<opti on nane="aggregation" val ue="cl ass"/>
</ vi ew>
</ export >
</target>

Comparing snapshots

Thecom j profil er.ant. Conpar eTask corresponds to the Conpar e Gradle task and performs
comparisons between two ore more snapshots. Like forthecom j profi | er. ant. Export Task,
comparisons are directly nested below the element and options are nested for each conpari son
element. The snapshot files are specified with a nested file set.

M http://ant.apache.org

213

http://ant.apache.org

<t askdef nane="conpare"
cl assnane="com j profil er.ant. ConpareTask"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<t arget nane="conpare">
<conpare sortbytime="true">
<fil eset dir="snapshots">
<i ncl ude name="*.jps" />
</fileset>
<conpari son name="Tel enetryHeap" fil e="heap. htm"/>
<conpari son nane="Tel enetryThreads" file="threads. htm ">
<opti on nane="neasurenents" val ue="inactive, active"/>
<option name="val uetype" val ue="booknark"/>
<opti on nane="booknar knane" val ue="test"/>
</ conpari son>
</ conpar e>
</target>

Analyzing heap snapshots

Like the Anal yze Gradle task, the equivalent com j profil er. ant. Anal yzeTask for Ant
prepares the heap snapshot analysis in snapshots that have been saved with offline profiling
for faster access in the GUI. The snapshots that should be processed are specified with a nested
file set.

<t askdef name="anal yze"
cl assnane="com j profiler.ant. Anal yzeTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="anal yze">
<anal yze>
<fileset dir="snapshots" includes="*.jps" />
</ anal yze>
</target>

214

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Method statistics
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	Configuration in detail
	Trouble shooting connection problems
	Scripts

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

